Nothing Special   »   [go: up one dir, main page]

Skip to main content

FedSDM: Semantic Data Manager for Federations of RDF Datasets

  • Conference paper
  • First Online:
Data Integration in the Life Sciences (DILS 2018)

Abstract

Linked open data movements have been followed successfully in different domains; thus, the number of publicly available RDF datasets and linked data based applications have increased considerably during the last decade. Particularly in Life Sciences, RDF datasets are utilized to represent diverse concepts, e.g., proteins, genes, mutations, diseases, drugs, and side effects. Albeit publicly accessible, the exploration of these RDF datasets requires the understanding of their main characteristics, e.g., their vocabularies and the connections among them. To tackle these issues, we present and demonstrate FedSDM, a semantic data manager for federations of RDF datasets. Attendees will be able to explore the relationships among the RDF datasets in a federation, as well as the characteristics of the RDF classes included in each RDF dataset (https://github.com/SDM-TIB/FedSDM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://networkx.github.io/.

References

  1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_2

    Chapter  Google Scholar 

  2. Beek, W., Fernández, J.D., Verborgh, R.: LOD-a-lot: a single-file enabler for data science. In: Proceedings of the 13th International Conference on Semantic Systems, SEMANTICS 2017, Amsterdam, The Netherlands, 11–14 Sept 2017, pp. 181–184 (2017)

    Google Scholar 

  3. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: optimizing federated sparql queries. In: Proceedings of the 11th International Conference on Semantic Systems, pp. 121–128. ACM (2015)

    Google Scholar 

  4. Endris, K.M., Almhithawi, Z., Lytra, I., Vidal, M.-E., Auer, S.: BOUNCER: privacy-aware query processing over federations of rdf datasets. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 69–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_5

    Chapter  Google Scholar 

  5. Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, M.-E., Auer, S.: MULDER: querying the linked data web by bridging rdf molecule templates. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64468-4_1

    Chapter  Google Scholar 

  6. Fundulaki, I., Auer, S.: Linked open data - introduction to the special theme. ERCIM News 2014(96) (2014)

    Google Scholar 

  7. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: COLD (2011)

    Google Scholar 

  8. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_38

    Chapter  Google Scholar 

  9. Vidal, M., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the selection of SPARQL endpoints to efficiently execute federated SPARQL queries. Trans. Large-Scale Data-Knowl.-Centered Syst. 25, 109–149 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the EU H2020 RIA under the Marie Skłodowska-Curie grant agreement No. 642795 (WDAqua) and EU H2020 Programme for the projects with GA No. 727658 (IASIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemele M. Endris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Endris, K.M., Vidal, ME., Auer, S. (2019). FedSDM: Semantic Data Manager for Federations of RDF Datasets. In: Auer, S., Vidal, ME. (eds) Data Integration in the Life Sciences. DILS 2018. Lecture Notes in Computer Science(), vol 11371. Springer, Cham. https://doi.org/10.1007/978-3-030-06016-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06016-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06015-2

  • Online ISBN: 978-3-030-06016-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics