Abstract
In the present paper, the problems of formation and observation of spatial and angular distribution of thermal radiation of raining atmosphere in the millimeter wave band are addressed. Radiative transfer of microwave thermal radiation in three-dimensional dichroic medium is simulated numerically using high performance parallel computer systems. Governing role of three dimensional cellular inhomogeneity of the precipitating atmosphere in the formation of thermal radiation field is shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basharinov, A.E., Gurvich, A.S., Egorov, S.T.: Radio Emission of the Earth as a Planet. Nauka, Moscow (1974)
Spencer, R., Goodman, H., Hood, R.: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Ocean. Technol. 6, 254–273 (1989)
Roberti, L., Haferman, J., Kummerow, C.: Microwave radiative transfer through horizontally inhomogeneous precipitating clouds. J. Geophys. Res. 99(D8), 16707–16718 (1994)
Battaglia, A., Davis, C., Emde, C., Simmer, C.: Microwave radiative transfer intercomparison study for 3-D dichroic media. J. Quant. Spectrosc. Radiat. Transf. 105(1), 55–67 (2007)
Evtushenko, A.V., Zagorin, G., Kutuza, B.G., Sobachkin, A., Hornbostel, A., Schroth, A.: Determination of the Stokes vector of the microwave radiation emitted and scattered by the atmosphere with precipitation. Izv.-Atmos. Ocean. Phys. 38(4), 470–476 (2002)
Emde, C., Buehler, S.A., Davis, C., Eriksson, P., Sreerekha, T.R., Teichmann, C.: A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres. J. Geophys. Res. Atmos. 109(D24), D24207 (2004)
Ilyushin, Y., Seu, R., Phillips, R.: Subsurface radar sounding of the Martian polar cap: radiative transfer approach. Planet. Space Sci. 53(14–15), 1427–1436 (2005)
Ilyushin, Y.A.: Radiative transfer in layered media: Application to the radar sounding of Martian polar ices. II. Planet. Space Sci. 55(1–2), 100–112 (2007)
Weinman, J.A., Davies, R.: Thermal microwave radiances from horizontally finite clouds of hydrometeors. J. Geophys. Res. Ocean. 83(C6), 3099–3107 (1978)
Begum, S., Otung, I.E.: Rain cell size distribution inferred from rain gauge and radar data in the UK. Radio Sci. 44(2) (2009). RS2015
Tsintikidis, D., Haferman, J.L., Anagnostou, E.N., Krajewski, W.F., Smith, T.F.: A neural network approach to estimating rainfall from spaceborne microwave data. IEEE Trans. Geosci. Remote. Sens. 35(5), 1079–1093 (1997)
Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing: Active and Passive, vol. 1. Addison-Wesley, Reading (1981)
Kutuza, B.G., Smirnov, M.T.: The influence of clouds on the radio-thermal radiation of the ‘atmosphere-ocean surface’ system. Issledovanie Zemli iz Kosmosa 1(3), 76–83 (1980)
Basharinov, A.E., Kutuza, B.G.: Determination of temperature dependence of the relaxation time of water molecules in clouds and possibilities for assessing the effective temperature of drop clouds by uhf radiometric measurements. Izv. Vyssh.Uchebn. Zaved., Radiofiz. 17(1), 52–57 (1974)
Czekala, H., Havemann, S., Schmidt, K., Rother, T., Simmer, C.: Comparison of microwave radiative transfer calculations obtained with three different approximations of hydrometeor shape. J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 545–558 (1999)
Czekala, H., Simmer, C.: Microwave radiative transfer with nonspherical precipitating hydrometeors. J. Quant. Spectrosc. Radiat. Transf. 60(3), 365–374 (1998)
Moroz, A.: Improvement of Mishchenko’s T-matrix code for absorbing particles. Appl. Opt. 44(17), 3604–3609 (2005)
Hornbostel, A.: Investigation of Tropospheric Influences on Earth-satellite Paths by Beacon, Radiometer and Radar Measurements/Doctoral thesis (1995)
Ilyushin, Y.A., Kutuza, B.G.: Influence of a spatial structure of precipitates on polarization characteristics of the outgoing microwave radiation of the atmosphere. Izv.-Atmos. Ocean. Phys. 52(1), 74–81 (2016)
Kummerow, C.: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteorol. 37(4), 356–370 (1998)
Davis, C., Evans, K., Buehler, S., Wu, D., Pumphrey, H.: 3-D polarised simulations of space-borne passive mm/sub-mm midlatitude cirrus observations: a case study. Atmos. Chem. Phys. 7(15), 4149–4158 (2007)
Kutuza, B.G., Hornbostel, A., Schroth, A.: Spatial inhomogeneities of rain brightness temperature and averaging effect for satellite microwave radiometer observations, vol. 3, pp. 1789–1791 (1994)
Kutuza, B.G., Zagorin, G.K., Hornbostel, A., Schroth, A.: Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third Stokes parameter. Radio Sci. 33(3), 677–695 (1998)
Kutuza, B.G., Zagorin, G.K.: Two-dimensional synthetic aperture millimeter-wave radiometric interferometric for measuring full-component Stokes vector of emission from hydrometeors. Radio Sci. 38(3), 8055 (2003)
Volosyuk, V.K., Gulyaev, Y.V., Kravchenko, V.F., Kutuza, B.G., Pavlikov, V.V., Pustovoit, V.I.: Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems. J. Commun. Technol. Electron. 59(2), 97–118 (2014)
Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Interscience Publishers, New York (1967)
Lebedev, V.: Quadrature formulas for a sphere of the 25–29th order of accuracy. Sib. Mat. Zh. 18(1), 132–142 (1977)
Sadovnichy, V.A., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “lomonosov”: supercomputing at moscow state university. In: In Contemporary High Performance Computing: From Petascale toward Exascale, pp. 283–307. Chapman & Hall/CRC Computational Science, Boca Raton, USA, CRC Press (2013)
Ilyushin, Y.A., Kutuza, B.G.: New possibilities of the use of synthetic aperture millimeter-wave radiometric interferometer for precipitation remote sensing from space. Proceedings -: International Kharkov Symposium on Physics and Engineering of Microwaves. Millimeter and Submillimeter Waves, MSMW (2013), pp. 300–302 (2013)
http://vrte.ru/16X2014KutuzaVDO3D/testSKIF1/htmGlobal/index.html
Evtushenko, A., Zagorin, G., Kutuza, B., Sobachkin, A., Hornbostel, A., Schroth, A.: Determination of the Stokes vector of the microwave radiation emitted and scattered by the atmosphere with precipitation. Izv.-Atmos. Ocean. Phys. 38(4), 470–476 (2002)
Acknowledgements
The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. Support from the Russian Fundamental Research Fund with grants 13-02-12065 ofi-m and 15-02-05476 is also kindly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ilyushin, Y., Kutuza, B. (2019). Microwave Radiometry of Atmospheric Precipitation: Radiative Transfer Simulations with Parallel Supercomputers. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-05807-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05806-7
Online ISBN: 978-3-030-05807-4
eBook Packages: Computer ScienceComputer Science (R0)