Abstract
Topic detection is an automatic method to discover topics in textual data. The standard methods of the topic detection are nonnegative matrix factorization (NMF) and latent Dirichlet allocation (LDA). Another alternative method is a clustering approach such as a k-means and fuzzy c-means (FCM). FCM extend the k-means method in the sense that the textual data may have more than one topic. However, FCM works well for low-dimensional textual data and fails for high-dimensional textual data. An approach to overcome the problem is transforming the textual data into lower dimensional space, i.e., Eigenspace, and called Eigenspace-based FCM (EFCM). Firstly, the textual data are transformed into an Eigenspace using truncated singular value decomposition. FCM is performed on the eigenspace data to identify the memberships of the textual data in clusters. Using these memberships, we generate topics from the high dimensional textual data in the original space. In this paper, we examine the accuracy of EFCM for topic detection. Our simulations show that EFCM results in the accuracies between the accuracies of LDA and NMF regarding both topic interpretation and topic recall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)
Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92–A, 708–721 (2009)
Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the β-divergence. Neural Comput. 23, 2421–2456 (2011)
Blei, D.M., et al.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–1347 (2013)
Hoffman, M.D., Blei, D.M., Bach, F.: Online learning for latent Dirichlet allocation. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, vol. 1, pp. 856–864. Curran Associates Inc., USA (2010)
Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: a probabilistic analysis. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 217–235 (1998)
Hofmann, T.: Probabilistic latent semantic analysis. In: Uncertainty in Artificial Intelligence, pp. 289–296 (1999)
Allan, J.: Topic Detection and Tracking: Event-Based Information Organization. Kluwer (2002)
Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: Two-level message clustering for topic detection in Twitter. In: CEUR Workshop Proceedings, vol. 1150, pp. 49–56 (2014)
Nur’Aini, K., Najahaty, I., Hidayati, L., Murfi, H., Nurrohmah, S.: Combination of singular value decomposition and K-means clustering methods for topic detection on Twitter. In: 2015 International Conference on Advanced Computer Science and Information Systems, Proceedings, ICACSIS 2015 (2016)
Fitriyani, S.R., Murfi, H.: The K-means with mini batch algorithm for topics detection on online news. In: 2016 4th International Conference on Information and Communication Technology, ICoICT 2016 (2016)
Alatas, H., Murfi, H., Bustamam, A.: Topic detection using fuzzy c-means with nonnegative double singular value decomposition initialization. Int. J. Adv. Soft Comput. its Appl. 10, 206–222 (2018)
Mursidah, I., Murfi, H.: Analysis of initialization method on fuzzy c-means algorithm based on singular value decomposition for topic detection. In: Proceedings of the 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), pp. 213–218 (2017)
Winkler, R., Klawonn, F., Kruse, R.: Fuzzy c-means in high dimensional spaces. Int. J. Fuzzy Syst. Appl. 1, 2–4 (2011)
Muliawati, T., Murfi, H.: Eigenspace-Based Fuzzy C-Means for Sensing Trending Topics in Twitter. In: AIP Conference Proceedings, vol. 1862, p. 030140 (2017)
Golub, G., Loan, C.V: Matrix Computation. The Johns Hopkins University Press (1996)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)
Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11, 351–368 (2003)
Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 530–539 (2014)
Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml
Manning, C.D., Schuetze, H., Raghavan, P.: Introduction to information retrieval. Cambridge University Press, Cambridge (2008)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Aiello, L.M., et al.: Sensing trending topics in Twitter. IEEE Trans. Multimed. 15, 1268–1282 (2013)
Sitorus, A.P., Murfi, H., Nurrohmah, S., Akbar, A.: Sensing trending topics in Twitter for Greater Jakarta area. Int. J. Electr. Comput. Eng. 7, 330–336 (2017)
Loper, E., Bird, S.: NLTK : the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72 (2006)
Acknowledgment
This work was supported by Universitas Indonesia under PDUPT 2018 grant. Any opinions, findings, and conclusions or recommendations are the authors’ and do not necessarily reflect those of the sponsor.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Murfi, H. (2018). The Accuracy of Fuzzy C-Means in Lower-Dimensional Space for Topic Detection. In: Qiu, M. (eds) Smart Computing and Communication. SmartCom 2018. Lecture Notes in Computer Science(), vol 11344. Springer, Cham. https://doi.org/10.1007/978-3-030-05755-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-05755-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05754-1
Online ISBN: 978-3-030-05755-8
eBook Packages: Computer ScienceComputer Science (R0)