Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Accuracy of Fuzzy C-Means in Lower-Dimensional Space for Topic Detection

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11344))

Included in the following conference series:

Abstract

Topic detection is an automatic method to discover topics in textual data. The standard methods of the topic detection are nonnegative matrix factorization (NMF) and latent Dirichlet allocation (LDA). Another alternative method is a clustering approach such as a k-means and fuzzy c-means (FCM). FCM extend the k-means method in the sense that the textual data may have more than one topic. However, FCM works well for low-dimensional textual data and fails for high-dimensional textual data. An approach to overcome the problem is transforming the textual data into lower dimensional space, i.e., Eigenspace, and called Eigenspace-based FCM (EFCM). Firstly, the textual data are transformed into an Eigenspace using truncated singular value decomposition. FCM is performed on the eigenspace data to identify the memberships of the textual data in clusters. Using these memberships, we generate topics from the high dimensional textual data in the original space. In this paper, we examine the accuracy of EFCM for topic detection. Our simulations show that EFCM results in the accuracies between the accuracies of LDA and NMF regarding both topic interpretation and topic recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  2. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92–A, 708–721 (2009)

    Article  Google Scholar 

  3. Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the β-divergence. Neural Comput. 23, 2421–2456 (2011)

    Article  MathSciNet  Google Scholar 

  4. Blei, D.M., et al.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–1347 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Hoffman, M.D., Blei, D.M., Bach, F.: Online learning for latent Dirichlet allocation. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, vol. 1, pp. 856–864. Curran Associates Inc., USA (2010)

    Google Scholar 

  7. Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: a probabilistic analysis. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 217–235 (1998)

    Google Scholar 

  8. Hofmann, T.: Probabilistic latent semantic analysis. In: Uncertainty in Artificial Intelligence, pp. 289–296 (1999)

    Google Scholar 

  9. Allan, J.: Topic Detection and Tracking: Event-Based Information Organization. Kluwer (2002)

    Google Scholar 

  10. Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: Two-level message clustering for topic detection in Twitter. In: CEUR Workshop Proceedings, vol. 1150, pp. 49–56 (2014)

    Google Scholar 

  11. Nur’Aini, K., Najahaty, I., Hidayati, L., Murfi, H., Nurrohmah, S.: Combination of singular value decomposition and K-means clustering methods for topic detection on Twitter. In: 2015 International Conference on Advanced Computer Science and Information Systems, Proceedings, ICACSIS 2015 (2016)

    Google Scholar 

  12. Fitriyani, S.R., Murfi, H.: The K-means with mini batch algorithm for topics detection on online news. In: 2016 4th International Conference on Information and Communication Technology, ICoICT 2016 (2016)

    Google Scholar 

  13. Alatas, H., Murfi, H., Bustamam, A.: Topic detection using fuzzy c-means with nonnegative double singular value decomposition initialization. Int. J. Adv. Soft Comput. its Appl. 10, 206–222 (2018)

    Google Scholar 

  14. Mursidah, I., Murfi, H.: Analysis of initialization method on fuzzy c-means algorithm based on singular value decomposition for topic detection. In: Proceedings of the 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), pp. 213–218 (2017)

    Google Scholar 

  15. Winkler, R., Klawonn, F., Kruse, R.: Fuzzy c-means in high dimensional spaces. Int. J. Fuzzy Syst. Appl. 1, 2–4 (2011)

    Google Scholar 

  16. Muliawati, T., Murfi, H.: Eigenspace-Based Fuzzy C-Means for Sensing Trending Topics in Twitter. In: AIP Conference Proceedings, vol. 1862, p. 030140 (2017)

    Google Scholar 

  17. Golub, G., Loan, C.V: Matrix Computation. The Johns Hopkins University Press (1996)

    Google Scholar 

  18. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  Google Scholar 

  19. Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11, 351–368 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 530–539 (2014)

    Google Scholar 

  21. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml

  22. Manning, C.D., Schuetze, H., Raghavan, P.: Introduction to information retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Aiello, L.M., et al.: Sensing trending topics in Twitter. IEEE Trans. Multimed. 15, 1268–1282 (2013)

    Article  Google Scholar 

  25. Sitorus, A.P., Murfi, H., Nurrohmah, S., Akbar, A.: Sensing trending topics in Twitter for Greater Jakarta area. Int. J. Electr. Comput. Eng. 7, 330–336 (2017)

    Google Scholar 

  26. Loper, E., Bird, S.: NLTK : the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72 (2006)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Universitas Indonesia under PDUPT 2018 grant. Any opinions, findings, and conclusions or recommendations are the authors’ and do not necessarily reflect those of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendri Murfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murfi, H. (2018). The Accuracy of Fuzzy C-Means in Lower-Dimensional Space for Topic Detection. In: Qiu, M. (eds) Smart Computing and Communication. SmartCom 2018. Lecture Notes in Computer Science(), vol 11344. Springer, Cham. https://doi.org/10.1007/978-3-030-05755-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05755-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05754-1

  • Online ISBN: 978-3-030-05755-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics