Abstract
The goal of this paper is to automatically recognize characters in popular TV series. In contrast to conventional approaches which rely on weak supervision afforded by transcripts, subtitles or character facial data, we formulate the problem as the multi-label classification which requires only label-level supervision. We propose a novel semantic projection network consisting of two stacked subnetworks with specially designed constraints. The first subnetwork is a contractive autoencoder which focuses on reconstructing feature activations extracted from a pre-trained single-label convolutional neural network (CNN). The second subnetwork functions as a region-based multi-label classifier which produces character labels for the input video frame as well as reconstructing the input visual feature from the mapped semantic labels space. Extensive experiments show that the proposed model achieves state-of-the-art performance in comparison with recent approaches on three challenging TV series datasets (the Big Bang Theory, the Defenders and Nirvava in Fire).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bojanowski, P., Bach, F., Laptev, I., Ponce, J., Schmid, C., Sivic, J.: Finding actors and actions in movies. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2280–2287. IEEE (2013)
Cour, T., Sapp, B., Nagle, A., Taskar, B.: Talking pictures: temporal grouping and dialog-supervised person recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021 (2011)
Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 919–926 (2009)
Cour, T., Sapp, B., Nagle, A., Taskar, B.: Talking pictures: temporal grouping and dialog-supervised person recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1014–1021. IEEE (2010)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)
Dong, Z., Jia, S., Wu, T., Pei, M.: Face video retrieval via deep learning of binary hash representations. In: AAAI, pp. 3471–3477 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, Z., Chen, C., Bu, J., Li, P., Cai, D.: Multi-view based multi-label propagation for image annotation. Neurocomputing 168(C), 853–860 (2015)
Iwata, M., Ito, A., Kise, K.: A study to achieve manga character retrieval method for manga images. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 309–313. IEEE (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)
Kostinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Learning to recognize faces from videos and weakly related information cues. In: IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 23–28 (2011)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. M.Sc. thesis, University of Toronto (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Li, C., Kang, Q., Ge, G., Song, Q., Lu, H., Cheng, J.: Deepbe: learning deep binary encoding for multi-label classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 39–46 (2016)
Li, Y., Wang, R., Cui, Z., Shan, S., Chen, X.: Compact video code and its application to robust face retrieval in tv-series. In: BMVC (2014)
Li, Y., Wang, R., Shan, S., Chen, X.: Hierarchical hybrid statistic based video binary code and its application to face retrieval in tv-series. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–8. IEEE (2015)
Nagrani, A., Zisserman, A.: From benedict cumberbatch to sherlock holmes: Character identification in tv series without a script. CoRR abs/1801.10442 (2017)
Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification—revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_28
Parkhi, O.M., Rahtu, E., Zisserman, A.: It’s in the bag: stronger supervision for automated face labelling. In: ICCV Workshop, vol. 2, p. 6 (2015)
Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)
Pont-Tuset, J., Arbeláez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2015)
Ramanathan, V., Joulin, A., Liang, P., Fei-Fei, L.: Linking people in videos with “their” names using coreference resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 95–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_7
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 512–519 (2014)
Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML (2011)
Shan, C.: Face recognition and retrieval in video. Stud. Comput. Intell. 287, 235–260 (2010)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sivic, J., Everingham, M., Zisserman, A.: “who are you?"- learning person specific classifiers from video. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1145–1152. IEEE (2009)
Tapaswi, M., Bäuml, M., Stiefelhagen, R.: Story-based video retrieval in TV series using plot synopses. In: Proceedings of International Conference on Multimedia Retrieval, p. 137. ACM (2014)
Tapaswi, M., Bauml, M., Stiefelhagen, R.: Storygraphs: visualizing character interactions as a timeline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 827–834 (2014)
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. (IJDWM) 3(3), 1–13 (2007)
Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2285–2294. IEEE (2016)
Wei, Y., et al.: CNN: single-label to multi-label. arXiv preprint arXiv:1406.5726 (2014)
Wei, Y., et al.: HCP: A flexible CNN framework for multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1901–1907 (2016)
Wohlhart, P., Köstinger, M., Roth, P.M., Bischof, H.: Multiple instance boosting for face recognition in videos. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 132–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23123-0_14
Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., Zhuang, Y.: Weakly semi-supervised deep learning for multi-label image annotation. IEEE Trans. Big Data 1(3), 109–122 (2015)
Yu, Q., Wang, J., Zhang, S., Gong, Y., Zhao, J.: Combining local and global hypotheses in deep neural network for multi-label image classification. Neurocomputing 235, 38–45 (2017)
Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038–2048 (2007)
Zhang, Z., Saligrama, V.: Zero-shot learning via joint latent similarity embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 6034–6042 (2016)
Acknowledgment
This work was jointly supported in part by the National Natural Science Foundation of China under Grant 61773414, and in part by the Shenzhen Future Industry Development Funding program under Grant 201607281039561400, and the Shenzhen Scientific Research and Development Funding Program under Grant JCYJ20170818092931604.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, K., Lei, Z., Zhu, J., Hou, X., Liu, B., Qiu, G. (2019). Character Prediction in TV Series via a Semantic Projection Network. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-05710-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05709-1
Online ISBN: 978-3-030-05710-7
eBook Packages: Computer ScienceComputer Science (R0)