Nothing Special   »   [go: up one dir, main page]

Skip to main content

Character Prediction in TV Series via a Semantic Projection Network

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11295))

Included in the following conference series:

  • 2667 Accesses

Abstract

The goal of this paper is to automatically recognize characters in popular TV series. In contrast to conventional approaches which rely on weak supervision afforded by transcripts, subtitles or character facial data, we formulate the problem as the multi-label classification which requires only label-level supervision. We propose a novel semantic projection network consisting of two stacked subnetworks with specially designed constraints. The first subnetwork is a contractive autoencoder which focuses on reconstructing feature activations extracted from a pre-trained single-label convolutional neural network (CNN). The second subnetwork functions as a region-based multi-label classifier which produces character labels for the input video frame as well as reconstructing the input visual feature from the mapped semantic labels space. Extensive experiments show that the proposed model achieves state-of-the-art performance in comparison with recent approaches on three challenging TV series datasets (the Big Bang Theory, the Defenders and Nirvava in Fire).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bojanowski, P., Bach, F., Laptev, I., Ponce, J., Schmid, C., Sivic, J.: Finding actors and actions in movies. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2280–2287. IEEE (2013)

    Google Scholar 

  2. Cour, T., Sapp, B., Nagle, A., Taskar, B.: Talking pictures: temporal grouping and dialog-supervised person recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021 (2011)

    Google Scholar 

  3. Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 919–926 (2009)

    Google Scholar 

  4. Cour, T., Sapp, B., Nagle, A., Taskar, B.: Talking pictures: temporal grouping and dialog-supervised person recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1014–1021. IEEE (2010)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Dong, Z., Jia, S., Wu, T., Pei, M.: Face video retrieval via deep learning of binary hash representations. In: AAAI, pp. 3471–3477 (2016)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. He, Z., Chen, C., Bu, J., Li, P., Cai, D.: Multi-view based multi-label propagation for image annotation. Neurocomputing 168(C), 853–860 (2015)

    Article  Google Scholar 

  9. Iwata, M., Ito, A., Kise, K.: A study to achieve manga character retrieval method for manga images. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 309–313. IEEE (2014)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  11. Kostinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Learning to recognize faces from videos and weakly related information cues. In: IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 23–28 (2011)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. M.Sc. thesis, University of Toronto (2009)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Li, C., Kang, Q., Ge, G., Song, Q., Lu, H., Cheng, J.: Deepbe: learning deep binary encoding for multi-label classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 39–46 (2016)

    Google Scholar 

  15. Li, Y., Wang, R., Cui, Z., Shan, S., Chen, X.: Compact video code and its application to robust face retrieval in tv-series. In: BMVC (2014)

    Google Scholar 

  16. Li, Y., Wang, R., Shan, S., Chen, X.: Hierarchical hybrid statistic based video binary code and its application to face retrieval in tv-series. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–8. IEEE (2015)

    Google Scholar 

  17. Nagrani, A., Zisserman, A.: From benedict cumberbatch to sherlock holmes: Character identification in tv series without a script. CoRR abs/1801.10442 (2017)

    Google Scholar 

  18. Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification—revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_28

    Chapter  Google Scholar 

  19. Parkhi, O.M., Rahtu, E., Zisserman, A.: It’s in the bag: stronger supervision for automated face labelling. In: ICCV Workshop, vol. 2, p. 6 (2015)

    Google Scholar 

  20. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  21. Pont-Tuset, J., Arbeláez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2015)

    Article  Google Scholar 

  22. Ramanathan, V., Joulin, A., Liang, P., Fei-Fei, L.: Linking people in videos with “their” names using coreference resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 95–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_7

    Chapter  Google Scholar 

  23. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 512–519 (2014)

    Google Scholar 

  24. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML (2011)

    Google Scholar 

  25. Shan, C.: Face recognition and retrieval in video. Stud. Comput. Intell. 287, 235–260 (2010)

    Google Scholar 

  26. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Sivic, J., Everingham, M., Zisserman, A.: “who are you?"- learning person specific classifiers from video. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1145–1152. IEEE (2009)

    Google Scholar 

  29. Tapaswi, M., Bäuml, M., Stiefelhagen, R.: Story-based video retrieval in TV series using plot synopses. In: Proceedings of International Conference on Multimedia Retrieval, p. 137. ACM (2014)

    Google Scholar 

  30. Tapaswi, M., Bauml, M., Stiefelhagen, R.: Storygraphs: visualizing character interactions as a timeline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 827–834 (2014)

    Google Scholar 

  31. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  32. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2285–2294. IEEE (2016)

    Google Scholar 

  33. Wei, Y., et al.: CNN: single-label to multi-label. arXiv preprint arXiv:1406.5726 (2014)

  34. Wei, Y., et al.: HCP: A flexible CNN framework for multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1901–1907 (2016)

    Article  Google Scholar 

  35. Wohlhart, P., Köstinger, M., Roth, P.M., Bischof, H.: Multiple instance boosting for face recognition in videos. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 132–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23123-0_14

    Chapter  Google Scholar 

  36. Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., Zhuang, Y.: Weakly semi-supervised deep learning for multi-label image annotation. IEEE Trans. Big Data 1(3), 109–122 (2015)

    Article  Google Scholar 

  37. Yu, Q., Wang, J., Zhang, S., Gong, Y., Zhao, J.: Combining local and global hypotheses in deep neural network for multi-label image classification. Neurocomputing 235, 38–45 (2017)

    Article  Google Scholar 

  38. Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  39. Zhang, Z., Saligrama, V.: Zero-shot learning via joint latent similarity embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 6034–6042 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was jointly supported in part by the National Natural Science Foundation of China under Grant 61773414, and in part by the Shenzhen Future Industry Development Funding program under Grant 201607281039561400, and the Shenzhen Scientific Research and Development Funding Program under Grant JCYJ20170818092931604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, K., Lei, Z., Zhu, J., Hou, X., Liu, B., Qiu, G. (2019). Character Prediction in TV Series via a Semantic Projection Network. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05710-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05709-1

  • Online ISBN: 978-3-030-05710-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics