Nothing Special   »   [go: up one dir, main page]

Skip to main content

VERGE in VBS 2019

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Abstract

This paper presents VERGE, an interactive video retrieval engine that enables browsing and searching into video content. The system implements various retrieval modalities, such as visual or textual search, concept detection and clustering, as well as a multimodal fusion and a reranking capability. All results are displayed in a graphical user interface in an efficient and friendly manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mklab-services.iti.gr/vbs2018.

References

  1. Awad, G., Butt, A., Fiscus, J., et al.: TRECVID 2017: evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In: Proceedings of TRECVID 2017. NIST, USA (2017)

    Google Scholar 

  2. Cobârzan, C., Schoeffmann, K., Bailer, W., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl. 76(4), 5539–5571 (2017)

    Article  Google Scholar 

  3. Nguyen, P.A., Lu, Y.-J., Zhang, H., Ngo, C.-W.: Enhanced VIREO KIS at VBS 2018. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 407–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_42

    Chapter  Google Scholar 

  4. Barthel, K.U., Hezel, N., Jung, K.: Fusing keyword search and visual exploration for untagged videos. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 413–418. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_43

    Chapter  Google Scholar 

  5. Lokoč, J., Kovalčík, G., Souček, T.: Revisiting SIRET video retrieval tool. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 419–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_44

    Chapter  Google Scholar 

  6. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Patt. Anal. Mach. Intell. 33(1), 117–128 (2011)

    Article  Google Scholar 

  7. Markatopoulou, F., Moumtzidou, A., Galanopoulos, D., et al.: ITI-CERTH participation in TRECVID 2017. In: Proceedings of TRECVID 2017 Workshop, USA (2017)

    Google Scholar 

  8. Markatopoulou, F., Mezaris, V., Patras, I.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circ. Syst. Video Technol. PP, 1 (2018)

    Article  Google Scholar 

  9. Over, P., et al.: TRECVID 2013 - an overview of the goals, tasks, data, evaluation mechanisms and metrics. In: Proceedings of TRECVID 2013 Workshop, USA (2013)

    Google Scholar 

  10. Guangnan, Y., Yitong, L., Hongliang, X., et al.: EventNet: a large scale structured concept library for complex event detection in video. In: Proceedings of ACM Multimedia Conference (ACM MM) (2015)

    Google Scholar 

  11. Zhou, B., Lapedriza, A., Xiao, J., et al.: Learning deep features for scene recognition using places database. In: Proceedings of NIPS, pp. 487–495 (2014)

    Google Scholar 

  12. Markatopoulou, F., Galanopoulos, D., Mezaris, V., Patras, I.: Query and keyframe representations for ad-hoc video search. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 407–411. ACM (2017)

    Google Scholar 

  13. Galanopoulos, D., Markatopoulou, F., Mezaris, V., Patras, I.: Concept language models and event-based concept number selection for zero-example event detection. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 397–401. ACM (2017)

    Google Scholar 

  14. Albitar, S., Fournier, S., Espinasse, B.: The impact of conceptualization on text classification. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 326–339. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35063-4_24

    Chapter  Google Scholar 

  15. Gialampoukidis, I., Moumtzidou, A., Liparas, D., Vrochidis, S., Kompatsiaris, I.: A hybrid graph-based and non-linear late fusion approach for multimedia retrieval. In: 2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6, June 2016

    Google Scholar 

Download references

Acknowledgements

This work was supported by the EU’s Horizon 2020 research and innovation programme under grant agreements H2020-779962 V4Desi-gn, H2020-700024 TENSOR, H2020-693092 MOVING and H2020-687786 InVID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios Andreadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreadis, S. et al. (2019). VERGE in VBS 2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05716-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05715-2

  • Online ISBN: 978-3-030-05716-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics