Nothing Special   »   [go: up one dir, main page]

Skip to main content

Utilizing Deep Object Detector for Video Surveillance Indexing and Retrieval

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11296))

Included in the following conference series:

Abstract

Intelligent video surveillance is one of the most challenging tasks in computer vision due to high requirements for reliability, real-time processing and robustness on low resolution videos. In this paper we propose solutions to those challenges through a unified system for indexing and retrieval based on recent discoveries in deep learning. We show that a single stage object detector such as YOLOv2 can be used as a very efficient tool for event detection, key frame selection and scene recognition. The motivation behind our approach is that the feature maps computed by the deep detector encode not only the category of objects present in the image, but also their locations, eliminating automatically background information. We also provide a solution to the low video quality problem with the introduction of a light convolutional network for object description and retrieval. Preliminary experimental results on different video surveillance datasets demonstrate the effectiveness of the proposed system.

Supported by Foxstream: http://www.foxstream.fr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Awad, G., Snoek, C.G.M., Smeaton, A.F., Quénot, G.: Trecvid semantic indexing of video: a 6-year retrospective. ITE Trans. Media Technol. Appl. 4(3), 187–208 (2016)

    Article  Google Scholar 

  2. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  3. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD : deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  4. Fularz, M., Kraft, M., Schmidt, A., Niechciał, J.: The PUT surveillance database. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 73–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23814-2_9

    Chapter  Google Scholar 

  5. Girshick, R.B.: Fast r-cnn. In: ICCV, pp. 1440–1448. IEEE Press, Santiago (2015)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV, pp. 2980–2988. IEEE Press, Venise (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Press, Las Vegas (2016)

    Google Scholar 

  8. Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(6), 797–819 (2011)

    Article  Google Scholar 

  9. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 34(3), 334–352 (2004)

    Article  Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456. JMLR.org (2015)

    Google Scholar 

  11. Jung, H., Choi, M.K., Jung, J., Lee, J.H., Kwon, S., Jung, W.Y.: Resnet-based vehicle classification and localization in traffic surveillance systems. In: CVPRW, pp. 934–940. IEEE Press, Honolulu (2017)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc., Lake Tahoe (2012)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007. IEEE Press, Venise (2017)

    Google Scholar 

  14. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  15. Luo, Z., et al.: MIO-TCD: a new benchmark dataset for vehicle classification and localization. IEEE Trans. Image Process. 27, 5129–5141 (2018)

    Google Scholar 

  16. Ning, G., et al.: Spatially supervised recurrent convolutional neural networks for visual object tracking. In: ISCAS, pp. 1–4. IEEE Press, Baltimore (2017)

    Google Scholar 

  17. Podlesnaya, A., Podlesnyy, S.: Deep learning based semantic video indexing and retrieval. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 16, pp. 359–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56991-8_27

    Chapter  Google Scholar 

  18. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788. IEEE Press, Las Vegas (2016)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR, pp. 6517–6525. IEEE Press, Honolulu (2017)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  21. Ren, S., He, K., Girshick, R.B., Sun, J.B.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)

    Article  Google Scholar 

  22. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

    Article  MathSciNet  Google Scholar 

  23. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252. IEEE Press, Ft. Collins (1999)

    Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9. IEEE Press, Boston (2015)

    Google Scholar 

  25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826. IEEE Press, Las Vegas (2016)

    Google Scholar 

  26. Ueki, K., Kobayashi, T.: Object detection oriented feature pooling for video semantic indexing. In: VISIGRAPP, pp. 44–51. SciTePress (2017)

    Google Scholar 

  27. Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.S.: Studying very low resolution recognition using deep networks. In: CVPR, pp. 4792–4800. IEEE Press, Las Vegas (2016)

    Google Scholar 

  28. Xu, Z., Hu, J., Deng, W.: Recurrent convolutional neural network for video classification. In: ICME, pp. 1–6. IEEE Press, Seattle (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durand, T., He, X., Pop, I., Robinault, L. (2019). Utilizing Deep Object Detector for Video Surveillance Indexing and Retrieval. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05716-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05715-2

  • Online ISBN: 978-3-030-05716-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics