Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using a BCI Prosthetic Hand to Control Phantom Limb Pain

  • Chapter
  • First Online:
Brain-Computer Interface Research

Abstract

Phantom limb pain is neuropathic pain that occurs after the amputation of a limb and partial or complete deafferentation. The underlying cause has been attributed to maladaptive plasticity of the sensorimotor cortex, and evidence suggests that experimental induction of further reorganization should affect the pain. Here, we use a brain–computer interface (BCI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BCI training successfully induced some plastic alteration in the sensorimotor representation of the phantom hand movements. If a patient tried to control the robotic hand by associating the representation of phantom hand movement, it increased the pain while improving classification accuracy of the phantom hand movements. However, if the patient tried to control the robotic hand by associating the representation of the intact hand, it decreased the pain while decreasing the classification accuracy of the phantom hand movements. These results demonstrate that the BCI training controls the phantom limb pain depending on the induced sensorimotor plasticity. Moreover, these results strongly suggest that a reorganization of the sensorimotor cortex is the underlying cause of phantom limb pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Wolff et al., 21. Phantom pain. Pain Pract 11(4), 403–413 (2011)

    Article  Google Scholar 

  2. H. Shankar, J. Hansen, K. Thomas, Phantom pain in a patient with brachial plexus avulsion injury. Pain Med. 16(4), 777–781 (2015)

    Article  Google Scholar 

  3. H. Flor, L. Nikolajsen, T. Staehelin Jensen, Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 7(11), 873–881 (2006)

    Article  Google Scholar 

  4. H. Flor, N. Birbaumer, Phantom limb pain: cortical plasticity and novel therapeutic approaches. Curr. Opin. Anaesthesiol. 13(5), 561–564 (2000)

    Article  Google Scholar 

  5. V.S. Ramachandran, D. Rogers-Ramachandran, S. Cobb, Touching the phantom limb. Nature 377(6549), 489–490 (1995)

    Article  Google Scholar 

  6. H. Flor et al., Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531), 482–484 (1995)

    Article  Google Scholar 

  7. M. Lotze et al., Phantom movements and pain: an fMRI study in upper limb amputees. Brain 124(11), 2268–2277 (2001)

    Article  Google Scholar 

  8. A. Karl et al., Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J. Neurosci. 21(10), 3609–3618 (2001)

    Article  Google Scholar 

  9. T.R. Makin et al., Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 138(8), 2140–2146 (2015)

    Article  Google Scholar 

  10. T.R. Makin et al., Phantom pain is associated with preserved structure and function in the former hand area. Nat. Commun. 4, 1570 (2013)

    Article  Google Scholar 

  11. A.L. Orsborn et al., Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6), 1380–1393 (2014)

    Article  Google Scholar 

  12. K. Ganguly et al., Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci. 14(5), 662–667 (2011)

    Article  Google Scholar 

  13. J.D. Wander et al., Distributed cortical adaptation during learning of a brain-computer interface task. Proc. Natl. Acad. Sci. U.S.A. 110(26), 10818–10823 (2013)

    Article  Google Scholar 

  14. Y. Nakanishi et al., Decoding fingertip trajectory from electrocorticographic signals in humans. Neurosci. Res. 85, 20–27 (2014)

    Article  Google Scholar 

  15. Y. Nakanishi et al., Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS ONE 8(8), e72085 (2013)

    Article  Google Scholar 

  16. T. Yanagisawa et al., Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann. Neurol. 71(3), 353–361 (2012)

    Article  Google Scholar 

  17. T. Yanagisawa et al., Real-time control of a prosthetic hand using human electrocorticography signals. J. Neurosurg. 114(6), 1715–1722 (2011)

    Article  Google Scholar 

  18. T. Yanagisawa et al., Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45(4), 1099–1106 (2009)

    Article  Google Scholar 

  19. T. Yanagisawa et al., Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J. Neurosci. 32(44), 15467–15475 (2012)

    Article  Google Scholar 

  20. T. Yanagisawa et al., Movement induces suppression of interictal spikes in sensorimotor neocortical epilepsy. Epilepsy Res. 87(1), 12–17 (2009)

    Article  Google Scholar 

  21. R. Fukuma et al., Closed-loop control of a neuroprosthetic hand by magnetoencephalographic signals. PLoS ONE 10(7), e0131547 (2015)

    Article  Google Scholar 

  22. A. Toda et al., Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods. NeuroImage 54(2), 892–905 (2011)

    Article  Google Scholar 

  23. E. Buch et al., Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917 (2008)

    Article  Google Scholar 

  24. R. Fukuma et al., Real-time control of a neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci. Rep. 6, 21781 (2016)

    Article  Google Scholar 

  25. Y. Nishimura et al., Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5), 1301–1309 (2013)

    Article  Google Scholar 

  26. K.B. Clancy et al., Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17(6), 807–809 (2014)

    Article  Google Scholar 

  27. E.R. Buch et al., Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(2), 596–614 (2012)

    Article  Google Scholar 

  28. T. Yanagisawa et al., Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nat. Commun. 7, 13209 (2016)

    Article  Google Scholar 

  29. A.M. Dale, B. Fischl, M.I. Sereno, Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9(2), 179–194 (1999)

    Article  Google Scholar 

  30. L.G. Cohen et al., Motor reorganization after upper limb amputation in man: a study with focal magnetic stimulation. Brain 114(1B), 615–627 (1991)

    Article  Google Scholar 

  31. T. Yoshioka et al., Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals. Neuroimage 42(4), 1397–1413 (2008)

    Article  Google Scholar 

  32. K. Shibata et al., Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061), 1413–1415 (2011)

    Article  Google Scholar 

  33. M.N. Baliki, A.V. Apkarian, Nociception, pain, negative moods, and behavior selection. Neuron 87(3), 474–491 (2015)

    Article  Google Scholar 

  34. R. Kuner, H. Flor, Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18(1), 20–30 (2016)

    Article  Google Scholar 

  35. T.D. Wager et al., An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368(15), 1388–1397 (2013)

    Article  Google Scholar 

  36. S. Raspopovic et al., Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted under the “Development of BMI Technologies for Clinical Application” of SRPBS by MEXT and AMED. This research was also supported in part by JST PRESTO; Grants-in-Aid for Scientific Research KAKENHI (90533802, 24700419, 26560467, 26242088, 22700435, 17H06032, 15H05710, 15H05920); Brain/MINDS and SICP from AMED; ImPACT; Ministry of Health, Labor, and Welfare (18261201); the Japan Foundation of Aging and Health and TERUMO foundation for life sciences and arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takufumi Yanagisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yanagisawa, T. et al. (2019). Using a BCI Prosthetic Hand to Control Phantom Limb Pain. In: Guger, C., Mrachacz-Kersting, N., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-05668-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05668-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05667-4

  • Online ISBN: 978-3-030-05668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics