Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison of BiClusO with Five Different Biclustering Algorithms Using Biological and Synthetic Data

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

Abstract

Over the past decade, different biclustering techniques have been widely used in analyzing bipartite relationship dataset in biology. According to different comparison studies, the performance of these algorithms vary upon dataset size, pattern, and property which makes it difficult for a researcher to take the right decision for selecting a good biclustering algorithm. In this work, we compare our previously developed biclustering algorithm BiClusO with five different algorithms using biological and synthetic data and evaluate the performances. We use data folding mechanism to convert the biclustering problem to a simple graph clustering problem where polynomial heuristic algorithm DPClusO is used. Using two different scoring methods, the performance of our algorithm is evaluated. Our algorithm shows the best performance over the selected five biclustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  2. Laura, L., Owen, A.: Plaid models for gene expression data. Stat. Sin. 12, 61–86 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Preli, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  4. Murali, T. M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. Biocomputing 2003, pp. 77–88 (2002)

    Google Scholar 

  5. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)

    Article  Google Scholar 

  6. Li, G., Ma, Q., Tang, H., Paterson, A.H., Ying, X.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucl. Acids Res. 37(15), e101–e101 (2009)

    Article  Google Scholar 

  7. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Phys. Rev. E 67(3), 031902 (2003)

    Article  Google Scholar 

  8. Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)

    Google Scholar 

  9. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl): S136–S144 (2002)

    Google Scholar 

  10. Eren, K., Deveci, M., KüçKüktunç, O., Çatalyurek, KÜ.V.: A comparative analysis of biclustering algorithms for gene expression data. Brief. Bioinform. 14(3), 279–292 (2012)

    Google Scholar 

  11. Li, L., Guo, Y., Wenwu, W., Shi, Y., Cheng, J., Tao, S.: A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data. BioData Min. 5(1), 8 (2012)

    Article  Google Scholar 

  12. Kaiser, S.: Package biclust, Title bicluster algorithms, Version 2.0.1, Date 2018-06-09

    Google Scholar 

  13. van Uitert, M., Meuleman, W., Wessels, L.: Biclustering sparse binary genomic data. J. Comput. Biol. 15(10), 1329–1345 (2008)

    Google Scholar 

  14. Altaf-Ul-Amin, Md., Wada, M., Kanaya, S.: Partitioning a PPI network into overlapping modules constrained by high-density and periphery tracking. ISRN Biomath. 2012 (2012)

    Google Scholar 

  15. Karim, M.B., Ono, N., Altaf-Ul-Amin, Md., Kanaya, S.: Classification of species by biclustering based on emitting volatile organic compounds. In: APBC 2018 Conference. Yokohama, Japan, 15–17 Jan 2018

    Google Scholar 

  16. Karim, M.B., Wakamatsu, N., Altaf-Ul-Amin, Md.: [Dedicated to Prof. T. Okada and Prof. T., : Nishioka: data science in chemistry] DPClusOST: a software tool for general purpose graph clustering. J. Comput. Aided. Chem. 18, 76–93 (2017)

    Google Scholar 

  17. Nakamura, Y.: KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55(1), e7–e7 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Bioscience Database Center in Japan; the Ministry of Education,Culture, Sports, Science, and Technology of Japan (16K07223 and 17K00406), NAIST Big Data Project and Platform Project for Supporting Drug Discovery and Life Science Research funded by Japan Agency for Medical Research and Development

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Altaf-Ul Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karim, M.B., Kanaya, S., Amin, M.AU. (2019). Comparison of BiClusO with Five Different Biclustering Algorithms Using Biological and Synthetic Data. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_46

Download citation

Publish with us

Policies and ethics