Abstract
Over the past decade, different biclustering techniques have been widely used in analyzing bipartite relationship dataset in biology. According to different comparison studies, the performance of these algorithms vary upon dataset size, pattern, and property which makes it difficult for a researcher to take the right decision for selecting a good biclustering algorithm. In this work, we compare our previously developed biclustering algorithm BiClusO with five different algorithms using biological and synthetic data and evaluate the performances. We use data folding mechanism to convert the biclustering problem to a simple graph clustering problem where polynomial heuristic algorithm DPClusO is used. Using two different scoring methods, the performance of our algorithm is evaluated. Our algorithm shows the best performance over the selected five biclustering algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)
Laura, L., Owen, A.: Plaid models for gene expression data. Stat. Sin. 12, 61–86 (2002)
Preli, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)
Murali, T. M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. Biocomputing 2003, pp. 77–88 (2002)
Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)
Li, G., Ma, Q., Tang, H., Paterson, A.H., Ying, X.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucl. Acids Res. 37(15), e101–e101 (2009)
Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Phys. Rev. E 67(3), 031902 (2003)
Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)
Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl): S136–S144 (2002)
Eren, K., Deveci, M., KüçKüktunç, O., Çatalyurek, KÜ.V.: A comparative analysis of biclustering algorithms for gene expression data. Brief. Bioinform. 14(3), 279–292 (2012)
Li, L., Guo, Y., Wenwu, W., Shi, Y., Cheng, J., Tao, S.: A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data. BioData Min. 5(1), 8 (2012)
Kaiser, S.: Package biclust, Title bicluster algorithms, Version 2.0.1, Date 2018-06-09
van Uitert, M., Meuleman, W., Wessels, L.: Biclustering sparse binary genomic data. J. Comput. Biol. 15(10), 1329–1345 (2008)
Altaf-Ul-Amin, Md., Wada, M., Kanaya, S.: Partitioning a PPI network into overlapping modules constrained by high-density and periphery tracking. ISRN Biomath. 2012 (2012)
Karim, M.B., Ono, N., Altaf-Ul-Amin, Md., Kanaya, S.: Classification of species by biclustering based on emitting volatile organic compounds. In: APBC 2018 Conference. Yokohama, Japan, 15–17 Jan 2018
Karim, M.B., Wakamatsu, N., Altaf-Ul-Amin, Md.: [Dedicated to Prof. T. Okada and Prof. T., : Nishioka: data science in chemistry] DPClusOST: a software tool for general purpose graph clustering. J. Comput. Aided. Chem. 18, 76–93 (2017)
Nakamura, Y.: KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55(1), e7–e7 (2014)
Acknowledgements
This work was supported by the National Bioscience Database Center in Japan; the Ministry of Education,Culture, Sports, Science, and Technology of Japan (16K07223 and 17K00406), NAIST Big Data Project and Platform Project for Supporting Drug Discovery and Life Science Research funded by Japan Agency for Medical Research and Development
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Karim, M.B., Kanaya, S., Amin, M.AU. (2019). Comparison of BiClusO with Five Different Biclustering Algorithms Using Biological and Synthetic Data. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-05414-4_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05413-7
Online ISBN: 978-3-030-05414-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)