Nothing Special   »   [go: up one dir, main page]

Skip to main content

Answer Aggregation of Crowdsourcing Employing an Improved EM-Based Approach

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11336))

  • 1716 Accesses

Abstract

Crowdsourcing platforms are frequently employed to collect answers from numerous participants on the Internet, e.g., Amazon Mechanical Turk. Different participants may have different answers for the same question. This cause unexpected aggregated answers. The accuracy of aggregated answers depends on answer quality. Answer quality varies by skill level of participants. In crowdsourcing, participants are defined as workers. Existing studies always characterize worker quality with their skills. However, the personality features of individual persons may have significant impact on the quality of their answers, e.g. worker emotion and worker intent. To this end, aggregating answers without taking into account the personality characteristics of persons may lead to unexpected results. To fill the gap this paper employs an improved EM-based approach for answer aggregation based on the answer data of workers and considering personality characteristics. The approach not only aggregates answers but also simultaneously estimates the skill level of each worker, worker emotion, worker intent and the difficulty of the task. Last but not least, the verification is conducted on real-world datasets Affect Text and simulation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng, J.H., Li, G.L., Feng, J.H.: A survey on crowdsourcing. Chin. J. Comput. 38(9), 1713–1726 (2015)

    Google Scholar 

  2. Kurve, A., Miller, D., Kesidis, G.: Multicategory crowdsourcing accounting for variable task difficulty, worker skill, and worker intention. IEEE Trans. Knowl. Data Eng. 27(3), 794–809 (2014)

    Article  Google Scholar 

  3. Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask? Proc. VLDB Endow. 5(11), 1495–1506 (2012)

    Article  Google Scholar 

  4. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems (2011)

    Google Scholar 

  5. Lee, J., Cho, H., Park, J.W., Cha, Y.R., Hwang, S.W., Nie, Z., Wen, J.R.: Hybrid entity clustering using crowds and data. VLDB J. 22(5), 711–726 (2013)

    Article  Google Scholar 

  6. Park, H., Garcia-Molina, H., Pang, R., Polyzotis, N., Parameswaran, A., Widom, J.: Deco: a system for declarative crowdsourcing. Proc. VLDB Endow. 5(12), 1990–1993 (2012)

    Article  Google Scholar 

  7. Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: International Conference on World Wide Web, pp. 469–478. ACM (2012)

    Google Scholar 

  8. Oswald, A., Proto, E., Sgroi, D.: Happiness and productivity. Soc. Sci. Electron. Publ. 33(4), 789–822 (2008)

    Article  Google Scholar 

  9. Dempster, A.P., Laird, L., Rubin, D.B.: Maximum likelihood estimation from incomplete data via the EM algorithm. Elearn 39(1), 1–38 (1977)

    MATH  Google Scholar 

  10. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., et al.: Learning from crowds. J. Mach. Learn. Res. 11(2), 1297–1322 (2010)

    MathSciNet  Google Scholar 

  11. Yu, H., Shen, Z.J., Fauvel, S., Cui, L.Z.: Efficient scheduling in crowdsourcing based on workers’ emotion. In: IEEE International Conference on Agents IEEE Computer Society, pp. 121–126 (2017)

    Google Scholar 

  12. Sun, H., Hu, K., Fang, Y., Song, Y.: Adaptive result inference for collecting quantitative data with crowdsourcing. IEEE Internet Things J. 4(5), 1389–1398 (2017)

    Article  Google Scholar 

  13. Koulougli, D., Hadjali, A., Rassoul, I.: Leveraging human factors to enhance query answering in crowdsourcing systems. In: IEEE Tenth International Conference on Research Challenges in Information Science, pp. 1–6. IEEE (2016)

    Google Scholar 

  14. Moayedikia, A., Ong, K.L., Boo, Y.L., Yeoh, W.: Bee colony based worker reliability estimation algorithm in microtask crowdsourcing. In: IEEE International Conference on Machine Learning and Applications, pp. 713–717. IEEE (2017)

    Google Scholar 

  15. Wu, M., Li, Q., Zhang, J., Cui, S., Li, D., Qi, Y.: A robust inference algorithm for crowd sourced categorization. In: International Conference on Intelligent Systems and Knowledge Engineering, pp. 1–6 (2017)

    Google Scholar 

  16. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In: International Conference on Neural Information Processing Systems, vol. 46, pp. 2035–2043. Curran Associates Inc. (2009)

    Google Scholar 

  17. Strapparava, C., Mihalcea, R.: SemEval-2007 task 14: affective text. In: International Workshop on Semantic Evaluations, pp. 70–74. Association for Computational Linguistics

    Google Scholar 

  18. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast—but is it good?: evaluating non-expert annotations for natural language tasks. In: Conference on Empirical Methods in Natural Language Processing 2008 (2008)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by National Key R&D Program No. 2017YFB1400100, SDNFSC No. ZR2018MF014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Liu, L., Cui, L., He, W., Li, H. (2018). Answer Aggregation of Crowdsourcing Employing an Improved EM-Based Approach. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11336. Springer, Cham. https://doi.org/10.1007/978-3-030-05057-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05057-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05056-6

  • Online ISBN: 978-3-030-05057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics