Nothing Special   »   [go: up one dir, main page]

Skip to main content

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11335))

  • 1758 Accesses

Abstract

In many Internet of Things systems, it is required to process a good supply of real-time data from the physical world. An important goal when designing such systems is to maintain data temporal consistency while consuming less power. In this paper, we propose, to our knowledge, the first solution to the energy-efficient temporal consistency maintenance problem on Dynamic Voltage and Frequency Scaling (DVFS)-capable multicore platforms. We consider the problem of how to minimize the overall total power consumption on multicore, while the temporal consistency of real-time data objects can be maintained. To end this, firstly, we propose an efficient per-CPU DVFS solution, under which the transaction set can be scheduled to meet the temporal consistency requirement while resulting in significant energy savings. Next, by adopting the proposed unicore DVFS techniques on each core, we further propose new energy-efficient mapping techniques to explore energy savings for multicore platforms. Finally, extensive simulation experiments are conducted and the results demonstrate the proposed solutions outperforms existing methods in terms of energy consumption (up to \(55\%\)).

The work was partially supported by the State Key Program of National Natural Science of China under Grant No. 61332001, National Natural Science Foundation of China under Grant Nos. 61572215, 61672252, Wuhan Youth Science and Technology Plan under Grant No. 2017050304010287, and the Fundamental Research Funds for the Central Universities, HUST-2016YXMS076.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aydin, H., Yang, Q.: Energy-aware partitioning for multiprocessor real-time systems. In: Proceedings of IPDPS, pp. 9–pp (2003)

    Google Scholar 

  2. Aydin, H., Melhem, R., Mossé, D., Mejía-Alvarez, P.: Power-aware scheduling for periodic real-time tasks. IEEE Trans. Comput. 53(5), 584–600 (2004)

    Article  Google Scholar 

  3. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-aware scheduling for real-time systems: a survey. ACM Trans. Embed. Comput. Syst. (TECS) 15(1), 7 (2016)

    Google Scholar 

  4. Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: Proceedings of RTSS, pp. 119–128 (2007)

    Google Scholar 

  5. Chen, G., Huang, K., Knoll, A.: Energy optimization for real-time multiprocessor system-on-chip with optimal DVFS and DPM combination. ACM Trans. Embed. Comput. Syst. (TECS) 13(3), 111 (2014)

    Google Scholar 

  6. Chen, J.J., Chakraborty, S.: Partitioned packing and scheduling for sporadic real-time tasks in identical multiprocessor systems. In: Proceedings of ECRTS, pp. 24–33 (2012)

    Google Scholar 

  7. Chen, J.J., Kuo, C.F.: Energy-efficient scheduling for real-time systems on dynamic voltage scaling (DVS) platforms. In: Proceedings of RTCSA, pp. 28–38. IEEE (2007)

    Google Scholar 

  8. Han, S., et al.: Online mode switch algorithms for maintaining data freshness in dynamic cyber-physical systems. IEEE Trans. Knowl. Data Eng. 28(3), 756–769 (2016)

    Article  Google Scholar 

  9. Ho, S.J., Kuo, T.W., Mok, A.K.: Similarity-based load adjustment for real-time data-intensive applications. In: Proceedings of RTSS, pp. 144–153 (1997)

    Google Scholar 

  10. Kang, K.D.: Reducing deadline misses and power consumption in real-time databases. In: Proceedings of RTSS, pp. 257–268 (2016)

    Google Scholar 

  11. Kang, K.D.: Enhancing timeliness and saving power in real-time databases. Real-Time Syst. 30(1), 1–30 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Kato, S., Yamasaki, N.: Semi-partitioned fixed-priority scheduling on multiprocessors. In: Proceedings of RTAS, pp. 23–32 (2009)

    Google Scholar 

  13. Kuo, T.W., Ho, S.J.: Similarity-based load adjustment for static real-time transaction systems. IEEE Trans. Comput. 49(2), 112–126 (2000)

    Article  Google Scholar 

  14. Lam, K.Y., Tsang, N.W.H., Han, S., Zhang, W., Ng, J.K.Y., Nath, A.: Activity tracking and monitoring of patients with alzheimer disease. Multimedia Tools Appl. 76(1), 489–521 (2017)

    Article  Google Scholar 

  15. Li, J., Chen, J.J., Xiong, M., Li, G., Wei, W.: Temporal consistency maintenance upon partitioned multiprocessor platforms. IEEE Trans. Comput. 65(5), 1632–1645 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, J., Xiong, M., Lee, V., Shu, L., Li, G.: Workload-efficient deadline and period assignment for maintaining temporal consistency under EDF. IEEE Trans. Comput. 62(6), 1255–1268 (2013)

    Article  MathSciNet  Google Scholar 

  17. Locke, D.: Real-time databases: real-world requirements. In: Bestavros, A., Lin, K.J., Son, S.H. (eds.) Real-Time Database Systems, pp. 83–91. Springer, Boston (1997). https://doi.org/10.1007/978-1-4615-6161-3_5

    Chapter  Google Scholar 

  18. Narayana, S., Huang, P., Giannopoulou, G., Thiele, L., Prasad, R.V.: Exploring energy saving for mixed-criticality systems on multi-cores. In: Proceedings of RTAS, pp. 1–12 (2016)

    Google Scholar 

  19. Quan, G., Niu, L., Hu, X.S., Mochocki, B.: Fixed priority scheduling for reducing overall energy on variable voltage processors. In: Proceedings of RTSS, pp. 309–318 (2004)

    Google Scholar 

  20. Ramamritham, K.: Real-time databases. Distrib. Parallel Databases 1(2), 199–226 (1993)

    Article  Google Scholar 

  21. Saifullah, A., Xu, Y., Lu, C., Chen, Y.: End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In: Proceedings of RTAS, pp. 13–22 (2011)

    Google Scholar 

  22. Wu, W., Zhang, J., Luo, A., Cao, J.: Distributed mutual exclusion algorithms for intersection traffic control. IEEE Trans. Parallel Distrib. Syst. 26(1), 65–74 (2015)

    Article  Google Scholar 

  23. Xiong, M., Han, S., Lam, K.Y., Chen, D.: Deferrable scheduling for maintaining real-time data freshness: algorithms, analysis, and results. IEEE Trans. Comput. 57(7), 952–964 (2008)

    Article  MathSciNet  Google Scholar 

  24. Xiong, M., Ramamritham, K.: Deriving deadlines and periods for real-time update transactions. IEEE Trans. Comput. 53(5), 567–583 (2004)

    Article  Google Scholar 

  25. Xiong, M., Wang, Q., Ramamritham, K.: On earliest deadline first scheduling for temporal consistency maintenance. Real-Time Syst. 40(2), 208–237 (2008)

    Article  Google Scholar 

  26. Zhang, F., Chanson, S.T.: Processor voltage scheduling for real-time tasks with non-preemptible sections. In: Proceedings of RTSS, pp. 235–245 (2002)

    Google Scholar 

  27. Zhu, D., Aydin, H.: Reliability-aware energy management for periodic real-time tasks. IEEE Trans. Comput. 58(10), 1382–1397 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Zhou, C., Li, J., Guo, B. (2018). Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05054-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05053-5

  • Online ISBN: 978-3-030-05054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics