Nothing Special   »   [go: up one dir, main page]

Skip to main content

SMIM: Superpixel Mutual Information Measurement for Image Quality Assessment

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Abstract

The image quality assessment (IQA) is a fundamental problem in signal processing that aims to measure the objective quality of an image by designing a mathematical model. Most full-reference (FR) IQA methods use fixed sliding windows to obtain structure information but ignore the variable spatial configuration information. In this paper, we propose a novel full-reference IQA method, named “superpixel normalized mutual information (SMIM)” based on the perspective of variable receptive field and information entropy. First, we find that consistence relationship exists between the information fidelity and human visual of individuals. Thus, we reproduce the human visual system (HVS) to semantically divide the image into multiple patches via superpixel segmentation. Then the weights of each image patches are adaptively calculated via its information volume. We verified the effectiveness of SMIM by applying it to data from the TID2008 database and data generated using some real application scenarios. Experiments show that SMIM outperforms some state-of-the-art FR IQA algorithms, including visual information fidelity (VIF).

This work is supported by the National Natural Science Foundation of China (61502354, 61671332, 61771353), Central Support Local Projects (2018ZYYD059), the Natural Science Foundation of Hubei Province of China (2012FFA099, 2012FFA134, 2013CF125, 2014CFA130, 2015CFB451), Scientific Research Foundation of Wuhan Institute of Technology (K201713), Graduate student scientific research innovation projects (CX2017069, CX2017070).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/brade31919/SRGAN-tensorflow.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  3. Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image quality assessment based on a degradation model. IEEE Trans. Image Process. 9(4), 636–650 (2000)

    Article  Google Scholar 

  4. Flannery, B.P., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (1986)

    MATH  Google Scholar 

  5. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR Oral), June 2016

    Google Scholar 

  6. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114, July 2017. https://doi.org/10.1109/CVPR.2017.19

  7. Li, J., Zhang, X., Ding, M.: Image quality assessment based on regional mutual information. AEUE - Int. J. Electron. C. 66(9), 784–787 (2012)

    Article  Google Scholar 

  8. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  9. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID 2008 - a database for evaluation of full-reference visual quality assessment metrics. Adv. Modern Radioelectron. 10, 30–45 (2004)

    Google Scholar 

  10. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006). A Publication of the IEEE Signal Processing Society

    Google Scholar 

  11. Sheikh, H.R., Bovik, A.C., Veciana, G.D.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  12. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  13. Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components analysis and its application to face image analysis. Image Vis. Comput. 28(6), 902–913 (2010). https://doi.org/10.1016/j.imavis.2009.11.005

    Article  Google Scholar 

  14. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers 2004, vol. 2, pp. 1398–1402 (2004)

    Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  16. Wang, Z., Sheikh, H.R., Bovik, A.C., et al.: Objective video quality assessment. Handb. Video Databases Des. Appl. 41, 1041–1078 (2003)

    Google Scholar 

  17. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Lu, T., Zhang, Y. (2018). SMIM: Superpixel Mutual Information Measurement for Image Quality Assessment. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05054-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05053-5

  • Online ISBN: 978-3-030-05054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics