Abstract
The image quality assessment (IQA) is a fundamental problem in signal processing that aims to measure the objective quality of an image by designing a mathematical model. Most full-reference (FR) IQA methods use fixed sliding windows to obtain structure information but ignore the variable spatial configuration information. In this paper, we propose a novel full-reference IQA method, named “superpixel normalized mutual information (SMIM)” based on the perspective of variable receptive field and information entropy. First, we find that consistence relationship exists between the information fidelity and human visual of individuals. Thus, we reproduce the human visual system (HVS) to semantically divide the image into multiple patches via superpixel segmentation. Then the weights of each image patches are adaptively calculated via its information volume. We verified the effectiveness of SMIM by applying it to data from the TID2008 database and data generated using some real application scenarios. Experiments show that SMIM outperforms some state-of-the-art FR IQA algorithms, including visual information fidelity (VIF).
This work is supported by the National Natural Science Foundation of China (61502354, 61671332, 61771353), Central Support Local Projects (2018ZYYD059), the Natural Science Foundation of Hubei Province of China (2012FFA099, 2012FFA134, 2013CF125, 2014CFA130, 2015CFB451), Scientific Research Foundation of Wuhan Institute of Technology (K201713), Graduate student scientific research innovation projects (CX2017069, CX2017070).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)
Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image quality assessment based on a degradation model. IEEE Trans. Image Process. 9(4), 636–650 (2000)
Flannery, B.P., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (1986)
Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR Oral), June 2016
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114, July 2017. https://doi.org/10.1109/CVPR.2017.19
Li, J., Zhang, X., Ding, M.: Image quality assessment based on regional mutual information. AEUE - Int. J. Electron. C. 66(9), 784–787 (2012)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID 2008 - a database for evaluation of full-reference visual quality assessment metrics. Adv. Modern Radioelectron. 10, 30–45 (2004)
Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006). A Publication of the IEEE Signal Processing Society
Sheikh, H.R., Bovik, A.C., Veciana, G.D.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)
Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components analysis and its application to face image analysis. Image Vis. Comput. 28(6), 902–913 (2010). https://doi.org/10.1016/j.imavis.2009.11.005
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers 2004, vol. 2, pp. 1398–1402 (2004)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wang, Z., Sheikh, H.R., Bovik, A.C., et al.: Objective video quality assessment. Handb. Video Databases Des. Appl. 41, 1041–1078 (2003)
Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Lu, T., Zhang, Y. (2018). SMIM: Superpixel Mutual Information Measurement for Image Quality Assessment. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-05054-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05053-5
Online ISBN: 978-3-030-05054-2
eBook Packages: Computer ScienceComputer Science (R0)