Abstract
By considering the influence of turning radius on UAV movement, the Dubins path can use geometric methods to plan the shortest curve between the initial state and the end state of UAV. But, the important prerequisite for this path planning is that the location and size of obstacles should be known and it is assumed that the obstacles are round. However, in actual tasks, UAV often cannot know the position, shape, and size of obstacles in advance during the movement. Therefore, it is difficult to efficiently implement obstacle avoidance planning in an unknown dynamic environment. In view of the dynamic mission environment and low-cost UAV system, this paper proposed a UAV dynamic obstacle avoidance planning algorithm based on Dubins path, which make use of real time detection and estimation and can be used to optimize the real-time obstacle avoidance path of UAV under the premise of unknown obstacle’s position, shape and size. Simulation results show that the algorithm is correct and can improve the efficiency of low-cost UAVs performing tasks in a dynamic environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, L., Zhou, W., Zhao, S.: Application of Mini-UAV in emergency rescue of major accidents of hazardous chemicals. In: The International Conference on Remote Sensing, pp. 152–155 (2013)
Bogatov, S., Mazny, N., Pugachev, A., et al.: Emergency radiation survey device onboard the UAV. ISPRS – Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 1, 51–53 (2013)
Ducard, G., Kulling, K.C., Geering, H.P.: A simple and adaptive online path planning system for a UAV. In: Proceedings of 2007 Mediterranean Conference on Control and Automation, Athens, Greece, pp. 1–6 (2007)
Ju, H.S., Tsai, C.C.: Design of intelligent flight control law following the optical payload. In: Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, Taibei, pp. 761–766 (2004)
Lee, J., Huang, R., Vaughn, A., et al.: Strategies of path planning for a UAV to track a ground vehicle. In: Proceedings of IEEE Conference on Autonomous Intelligent Networked Systems, Menlo Park, USA, pp. 602–607 (2003)
Wang, T., Wei, X., Sun, Q., et al.: GSA-based jammer localization in multi-hop wireless network. In: IEEE International Conference on Computational Science and Engineering, pp. 410–415. IEEE (2017)
Enomoto, K., Yamasaki, T., Takano, H., et al.: Automatic following for UAVs using dynamic inversion. In: Proceedings of SICE Annual Conference, SICE 2007, pp. 2240–2246 (2007)
Cao, C., Hovakimyan, N., Kaminer, I., et al.: Stabilization of cascaded systems via L1 adaptive controller with application to a UAV path following problem and flight test results. In: Proceedings of the 2007 American Control Conference, New York, pp. 1787–1792 (2007)
Wei, X., Hu, F., Sun, Q., et al.: Association graph based jamming detection in multi-hop wireless networks. In: IEEE International Conference on Computational Science and Engineering, pp. 397–402. IEEE (2017)
Dubins, L.E.: On plane curves with curvature. Pacif. J. Math. 11(2), 471–481 (1961)
Choi, H., Kim, Y., Hwang, I.: Reactive collision avoidance of unmanned aerial vehicles using a single vision sensor. J. Guidance Control Dyn. 36(36), 1234–1240 (2015)
Zhang, L.P., Guan, X.N.: Design of autonomous collision avoidance controller for UAVs. Electron. Opt. Control 22(4), 13–18 (2015)
Mashaly, A.S., Wang, Y., Liu, Q.: Efficient sky segmentation approach for small UAV autonomous obstacles avoidance in cluttered environment. In: Geoscience and Remote Sensing Symposium, pp. 6710–6713. IEEE (2016)
Meng, Z.J., Huang, P.F., Yan, J.: Exploring trajectory planning for hypersonic vehicle using improved sparse A* algorithm. J. Northwest. Polytechnical Univ. 28(2), 182–186 (2010)
Guan, Z.Y., Yang, D.X., Li, J., et al.: Obstacle avoidance planning algorithm for UAV based on Dubins path. Trans. Beijing Inst. Technol. 34(6), 570–575 (2014)
Aguilar, W., Casaliglla, V., Pólit, J.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6, 10 (2017)
Kikutis, R., Stankūnas, J., Rudinskas, D., et al.: Adaptation of Dubins paths for UAV ground obstacle avoidance when using a low cost on-board GNSS sensor. Sensors 17(10), 2223 (2017)
Ding, J.R., Deng, C.P., et al.: Path planning algorithm for unmanned aerial vehicles based on improved artificial potential field. J. Comput. Appl. 36(1), 287–290 (2016)
Zhao, Y., Jiao, L., Zhou, R., et al.: UAV formation control with obstacle avoidance using improved artificial potential fields. In: Chinese Control Conference, pp. 6219–6224 (2017)
Tian, Y.Z., Zhang, Y.J.: UAV path planning based on improved artificial potential field in dynamic environment. J. Wuhan Univ. Sci. Technol. 40(6), 451–456 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, N., Dai, F., Liu, F., Zhang, G. (2018). Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-05054-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05053-5
Online ISBN: 978-3-030-05054-2
eBook Packages: Computer ScienceComputer Science (R0)