Nothing Special   »   [go: up one dir, main page]

Skip to main content

Embedding Exchanged Hypercubes into Rings and Ladders

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11335))

  • 1780 Accesses

Abstract

Graph embeddings are not only used to study the simulation capabilities of a parallel architecture but also to design its VLSI layout. The n-dimensional hypercube is one of the most popular topological structure for interconnection networks in parallel computing and communication systems. The exchanged hypercube \(EH_{s,t}\) (where \(s\ge 1\) and \(t\ge 1\)) is obtained by systematically deleting edges from a hypercube \(Q_{s+t+1}\), which retains several valuable and desirable properties of the hypercube such as a small diameter, bipancyclicity, and super connectivity. In this paper, we identify maximum induced subgraph of \(EH_{s,t}\) and study embeddings of \(EH_{s,t}\) into a ring and a ladder with minimum wirelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arockiaraj, M., Abraham, J., Quadras., J.: Linear layout of locally twisted cubes. Int. J. Comput. Math. 94(1), 56–65 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bezrukov, S.L., Das, S.K., Elsasser, R.: An edge-isoperimetric problem for powers of the Petersen graph. Ann. Combinatorics 4(2), 153–169 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.P.: Embedding of hypercubes into grids. Mortar Fire Control System, pp. 693–701 (1998)

    Google Scholar 

  4. Boals, A.J., Gupta, A.K., Sherwani, N.A.: Incomplete hypercubes: algorithms and embeddings. J. Supercomputing 8(3), 263–294 (1994)

    Article  Google Scholar 

  5. Chen, Y., Shen, H.: Routing and wavelength assignment for hypercube in array-based WDM optical networks. J. Parallel Distrib. Comput. 70(1), 59–68 (2010)

    Article  Google Scholar 

  6. Erbele, J., Chavez, J., Trapp, R.: The cyclic cutwidth of \(Q_{n}\). Technical report, California State UniversitySan Bernardino (CSUSB) (2003)

    Google Scholar 

  7. Fan, J., Jia, X., Lin, X.: Complete path embeddings in crossed cubes. Inf. Sci. 176(22), 3332–3346 (2006)

    Article  MathSciNet  Google Scholar 

  8. Fan, J., Jia, X., Lin, X.: Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica 51(3), 264–282 (2008)

    Article  MathSciNet  Google Scholar 

  9. Wang, X., Fan, J., Jia, X.: Embedding meshes into twisted-cubes. Inf. Sci. 181(14), 3085–3099 (2011)

    Article  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979)

    Google Scholar 

  11. Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cambridge University Press, UK (2004)

    Google Scholar 

  12. Han, Y., Fan, J., Zhang, S.: Embedding meshes into locally twisted cubes. Inf. Sci. 180(19), 3794–3805 (2010)

    Article  MathSciNet  Google Scholar 

  13. Huang, K.E., Wu, J.: Area efficient layout of balanced hypercubes. Int. J. High Speed Electron. Syst. 6(04), 631–645 (1995)

    Article  Google Scholar 

  14. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC, Boca Raton (2008)

    MATH  Google Scholar 

  15. Liu, Y.-L., Wu, R.-C.: Implementing exchanged hypercube communication patterns on ring-connected WDM optical networks. IEICE Trans. Inf. Syst. 100(12), 2771–2780 (2017)

    Article  Google Scholar 

  16. Loh, P.K.K., Hsu, W.-J., Pan, Y.: The exchanged hypercube. IEEE Trans. Parallel Distrib. Syst. 16(9), 866–874 (2005)

    Article  Google Scholar 

  17. Katseff, H.: Incomplete hypercubes. IEEE Trans. Comput. 37(5), 604–608 (1988)

    Article  Google Scholar 

  18. Ma, M., Liu, B.: Cycles embedding in exchanged hypercubes. Inf. Process. Lett. 110(2), 71–76 (2009)

    Article  MathSciNet  Google Scholar 

  19. Manuel, P., Rajasingh, I., Rajan, B.: Exact wirelength of hypercubes on a grid. Discrete Appl. Math. 157(7), 1486–1495 (2009)

    Article  MathSciNet  Google Scholar 

  20. Ma, M., Zhu, L.: The super connectivity of exchanged hypercubes. Inf. Process. Lett. 111(8), 360–364 (2011)

    Article  MathSciNet  Google Scholar 

  21. Miller, M., Rajan, R.S., Parthiban, N.: Minimum linear arrangement of incomplete hypercubes. Comput. J. 58(2), 331–337 (2015)

    Article  Google Scholar 

  22. Nakano, K.: Linear layout of generalized hypercubes. Int. J. Found. Comput. Sci. 14(01), 137–156 (2003)

    Article  MathSciNet  Google Scholar 

  23. Rostami, H., Habibi, J.: Minimum linear arrangement of Chord graphs. Appl. Math. Comput. 203(1), 358–367 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Sýkora, O., Vrt’o, I.: On VLSI layouts of the star graph and related networks. Integr. VLSI J. 17(1), 83–93 (1994)

    Article  Google Scholar 

  25. Wan, L., Liu., Y.: On the embedding genus distribution of ladders and crosses. Appl. Math. Lett. 22(5) 738–742 (2009)

    Article  MathSciNet  Google Scholar 

  26. Wang, D.: Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel Distrib. Syst. 23(11), 2117–2124 (2012)

    Article  Google Scholar 

  27. Wang, S., Zhang, S.: Embedding hamiltonian paths in \(k\)-ary \(n\)-cubes with conditional edge faults. Theoret. Comput. Sci. 412(46), 6570–6584 (2011)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y., Li, J., Wang, S.: Embedding various cycles with prescribed paths into \(k\)-ary \(n\)-cubes. Discrete Appl. Math. 220, 161–169 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yang, X., David, J.E., Graham, M.: Maximum induced subgraph of a recursive circulant. Inf. Process. Lett. 95(1), 293–298 (2005)

    Article  MathSciNet  Google Scholar 

  30. Yeh, C. H., Varvarigos, E. A., Parhami, B.: Multilayer VLSI layout for interconnection networks. In: Proceedings of International Conference on IEEE Parallel Processing, pp. 33–40 (2000)

    Google Scholar 

  31. Yu, C., Yang, X.: Routing and wavelength assignment for 3-ary \(n\)-cube in array-based optical network. Inf. Process. Lett. 112(6), 252–256 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

We would like to express our sincerest appreciation to Prof. Guoliang Chen for his constructive suggestions. This work is supported by National Key R&D Program of China (2018YFB1003201), Natural Science Foundation of China under grant (No. 61572337, No. 61602333, No. 61672296 and No. 61702351), China Postdoctoral Science Foundation (No. 172985), Scientific & Technological Support Project of Jiangsu Province (No. BE2016777, No. BE2016185), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Nos. 17KJB520036), Jiangsu Planned Projects for Postdoctoral Research Funds under Grant (No. 1701172B) and Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Foundation (No. WSNLBKF201701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, W., Fan, J., Lin, CK., Han, Z., Li, P., Wang, R. (2018). Embedding Exchanged Hypercubes into Rings and Ladders. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05054-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05053-5

  • Online ISBN: 978-3-030-05054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics