Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distortion Correction Method of Zoom Lens Based on Vanishing Point Geometric Constraint

  • Chapter
  • First Online:
Cognitive Internet of Things: Frameworks, Tools and Applications (ISAIR 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Included in the following conference series:

  • 835 Accesses

Abstract

In order to solve the problem that the nonlinear distortion of the zoom lens varies with the focal length changes, a fast correction method for zoom lens based on the minimum fitting error of vanishing points is proposed. Firstly, based on the radial distortion model, the equation between the vanishing point and the radial distortion coefficient is established according to the geometric constraint of the vanishing point. And then, according to the principle of the deviation error minimization, use the least squares to fit the equation of straight line of the corrected points. Finally, the variation of distortion parameters with focal length is analyzed, the distortion parameter table between distortion parameter and focal length and the empirical formula of fitting are established. The results of images correction show that the proposed method can effectively correct the nonlinear distortion of zoom lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)

    Article  Google Scholar 

  2. Lu, H., Li, Y., Mu S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J., 1–8 (2017)

    Google Scholar 

  3. Wang, Z., Mills, J., Xiao, W., Huang, R., Zheng, S., Li, Z.: A flexible, generic photogrammetric approach to zoom lens calibration. Remote. Sens. 9(3), 1–15 (2017)

    Google Scholar 

  4. Wu, B., Hu, H., Zhu, Q., Zhang, Y.: A flexible method for zoom lens calibration and modeling using a planar checkerboard. Photogramm. Eng. Remote. Sens. 79(6), 555–571 (2013)

    Article  Google Scholar 

  5. Fang, W., Zheng, L.: Distortion correction modeling method for zoom lens cameras with bundle adjustment. J. Opt. Soc. Korea 20(1), 140–149 (2016)

    Article  Google Scholar 

  6. Zhou, Q., Liu, J.: Rapid nonlinear distortion correction of aerial optical zoom lens system. Acta Optica Sinica 35(4), 0411001 (2015)

    Article  Google Scholar 

  7. Yao, N., Lin, Z., Ren, C., Yang, K.: A distortion model suitable for nonliner distortion correction of digital video camera. Laser Optoelectron. Prog. 51(2), 022204 (2014)

    Article  Google Scholar 

  8. Lu, H., Li, B., Zhu, J., Li, Y., Li, Y., Xu, X., He, L., Li, X., Li, J., Serikawa, S.: Wound intensity correction and segmentation with convolutional neural networks. Concurr. Comput. Pract. Exp. 29(6), 1–10 (2016)

    Google Scholar 

  9. Lu, H., Li, Y., Uemura, T., Kim, H., Serikawa, S.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur. Gener. Comput. Syst., 1–19 (2018)

    Google Scholar 

  10. Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)

    Article  Google Scholar 

  11. Shin, H., Oh, J., Sohn, K.: Automatic radial distortion correction in zoom lens video camera. J. Electron. Imaging 19(4), 2843–2850 (2010)

    Google Scholar 

  12. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (2003)

    Article  Google Scholar 

  13. Zhang, Z.: A flexible new technique for camera calibration. IEEE Comput. Soc. 22(11), 1330–1334 (2000)

    Google Scholar 

  14. Huang, J., Wang, Z., Xue, Q., Gao, J.: Calibration of camera with rational function lens distortion model. Chin. J. Lasers 41(5), 0508001 (2014)

    Article  Google Scholar 

  15. Liu, D., Liu, X., Wang, M.: Automatic approach of lens radial distortion correction based on vanishing points. J. Image Graph. 19(3), 407–413 (2014)

    Google Scholar 

  16. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I-125–I-132. IEEE (2001)

    Google Scholar 

  17. Zhou, Q., Liu, J.: Rapid nonlinear distortion correction of aerial optical zoom lens system. Acta Optica Sinica 35(4), 0411001 (2015)

    Article  Google Scholar 

  18. Zheng, S., Wang, Z., Huang, R.: Zoom lens calibration with zoom- and focus-related intrinsic parameters applied to bundle adjustment. ISPRS J. Photogramm Remote. Sens. 102, 62–72 (2015)

    Article  Google Scholar 

  19. Zhu, Z., Liu, Q., Song, R., Chen, S.: The sparse least square support vector regression for estimating illumination chromaticity. Color Res Appl. 43(4), 517–526 (2018)

    Article  Google Scholar 

  20. Chen, T., Ma, Z., Wu, X., Wu, D.: Robust correction method for camera lens distortion. Control. Decis. 28(3), 461–465 (2013)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Program of Jiangxi Outstanding Youth Talent Assistance (Grant No. 20162BCB23047), and Science and Technology Pillar Program of Jiangxi Province (Grant No. 20151BBE50116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Z., Liu, Q., Wang, X., Pei, S. (2020). Distortion Correction Method of Zoom Lens Based on Vanishing Point Geometric Constraint. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_35

Download citation

Publish with us

Policies and ethics