Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Deep Architecture for Chinese Semantic Matching with Pairwise Comparisons and Attention-Pooling

  • Chapter
  • First Online:
Cognitive Internet of Things: Frameworks, Tools and Applications (ISAIR 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Included in the following conference series:

  • 833 Accesses

Abstract

Semantic sentence matching is a fundamental technology in natural language processing. In the previous work, neural networks with attention mechanism have been successfully extended to semantic matching. However, existing deep models often simply use some operations such as summation and max-pooling to represent the whole sentence to a single distributed representation. We present a deep architecture to match two Chinese sentences, which only relies on alignment instead of recurrent neural network after attention mechanism used to get interaction information between sentence-pairs, it becomes more lightweight and simple. In order to capture original features enough, we employ a pooling operation named attention-pooling to convergence information from the whole sentence. We also explore several excellent performance English models on Chinese data. The experimental results show that our method can achieve better results than other models on Chinese dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, A., Caruana, R., Cohn, D., Freitag, D., Mittal, V.: Bridging the lexical chasm: statistical approaches to answer-finding. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 192–199 (2000)

    Google Scholar 

  2. Lu, Z., Li, H.: A deep architecture for matching short texts. Adv. Neural Inf. Process. Syst. (NIPS), 1367–1375 (2013)

    Google Scholar 

  3. Aliguliyev, R.M.: A new sentence similarity measure and sentence based extractive technique for automatic text summarization. Expert Syst. Appl. (2009)

    Google Scholar 

  4. Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using click through data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (CIKM), pp. 2333–2338 (2013)

    Google Scholar 

  5. Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R.K.: Deep sentence embedding using the long short term memory network: analysis and application to information retrieval. CoRR abs arXiv:1502.06922 (2015)

  6. Csernai, K.: Quora question pair dataset (2017)

    Google Scholar 

  7. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2015)

    Google Scholar 

  8. Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus for sentence understanding through inference. arXiv:1704.05426 (2017)

  9. Ant Financial. Ant Financial Artificial Competition. https://dc.cloud.alipay.com/index#/-topic/data?id=3

  10. Junyi, S.: jieba. https://github.com/fxsjy/jieba

  11. Mikolov, T., et al.: Efficient estimation of word representations in vector space. https://arxiv.org/abs/1301.3781

  12. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv:1505.00387 (2015)

  13. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M. (eds) Proceedings of SSST@EMNLP 2014 (2014)

    Google Scholar 

  14. Seo, M.J., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for machine comprehension. arXiv:1611.01603 (2016)

  15. Chen, Q., Zhu, X.: Enhanced LSTM for natural language inference. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 1657–1668

    Google Scholar 

  16. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. https://arxiv.org/pdf/1606.01933

  17. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of AISTATS (2011)

    Google Scholar 

  18. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 1–8 (2017)

    Google Scholar 

  19. Natural Language Computing Group, Microsoft Research Asia. R-NET: Machine Reading Comprehension With Self-matching Networks. https://www.microsoft.com/en-us/research/publication/mrc/

  20. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR (2014)

    Google Scholar 

  21. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. https://arxiv.org/abs/1412.6980

  22. Xu, X., He, L., Lu, H., Gao, L., Ji, Y.: Deep adversarial metric learning for cross-modal retrieval. World Wide Web J. https://doi.org/10.1007/s11280-018-0541-x (2018)

  23. Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. https://doi.org/10.1109/jiot.2017.2737479 (2017)

  24. Deshpande, A.: Diving into natural language processing. https://dzone.com/articles/-natural-language-processing-adit-deshpande-cs-unde

  25. Serikawa, S., Huimin, L.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)

    Article  Google Scholar 

  26. Lu, H., Li, Y., Uemura, T.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Gener. Comput. Syst. https://doi.org/10.1016/j.future.2018.01.001 (2018)

  27. Lu, H., et al.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Gener. Comput. Syst. https://doi.org/10.1016/j.future.2018.01.001 (2018)

  28. Choi, J., Yoo, K.M., Lee, S.: Learning to compose task-specific tree structures. AAAI (2017)

    Google Scholar 

  29. Nie, Y., Bansal, M.: Shortcut-stacked sentence encoders for multi-domain inference. arXiv:1708.02312 (2017)

Download references

Acknowledgements

We are especially grateful to Ant Financial for allowing us to use the dataset from Ant Financial Artificial Competition for experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizheng Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lai, H., Tao, Y., Wang, C., Xu, L., Tang, D., Li, G. (2020). A Deep Architecture for Chinese Semantic Matching with Pairwise Comparisons and Attention-Pooling. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_22

Download citation

Publish with us

Policies and ethics