Abstract
In this paper, a comparison of reinforcement learning algorithms and their performance on a robot box pushing task is provided. The robot box pushing problem is structured as both a single agent problem and also a multi-agent problem. A Q-learning algorithm is applied to the single-agent box pushing problem, and three different Q-learning algorithms are applied to the multi-agent box pushing problem. Both sets of algorithms are applied on a dynamic environment that is comprised of static objects, a static goal location, a dynamic box location, and dynamic agent positions. A simulation environment is developed to test the four algorithms, and their performance is compared through graphical explanations of test results. The comparison shows that the newly applied reinforcement algorithm out-performs the previously applied algorithms on the robot box pushing problem in a dynamic environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chakraborty, J., Konar, A., Nagar, A., Das, S.: Rotation and translation selective pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2120–2126, May 2009. https://doi.org/10.1109/CEC.2009.4983203
Hwang, K.S., Ling, J.L., Wang, W.H.: Adaptive reinforcement learning in box-pushing robots. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1182–1187, August 2014. https://doi.org/10.1109/CoASE.2014.6899476
La, H.M., Lim, R., Sheng, W.: Multirobot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol. 23(1), 52–63 (2015). https://doi.org/10.1109/TCST.2014.2312392
La, H.M., Lim, R.S., Sheng, W., Chen, J.: Cooperative flocking and learning in multi-robot systems for predator avoidance. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, pp. 337–342, May 2013. https://doi.org/10.1109/CYBER.2013.6705469
Parra-Gonzalez, E.F., Ramirez-Torres, J.G., Toscano-Pulido, G.: A new object path planner for the box pushing problem. In: 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 119–124, September 2009. https://doi.org/10.1109/CERMA.2009.54
Rakshit, P., Konar, A., Nagar, A.K.: Multi-robot box-pushing in presence of measurement noise. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4926–4933, July 2016. https://doi.org/10.1109/CEC.2016.7744422
Wang, Y., Silva, C.W.D.: Multi-robot box-pushing: Single-agent q-learning vs. team q-learning. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3694–3699, October 2006. https://doi.org/10.1109/IROS.2006.281729
Wang, Y., de Silva, C.W.: An object transportation system with multiple robots and machine learning. In: Proceedings of the 2005, American Control Conference, vol. 2, pp. 1371–1376, June 2005. https://doi.org/10.1109/ACC.2005.1470156
Yasuda, T., Ohkura, K., Yamada, K.: Multi-robot cooperation based on continuous reinforcement learning with two state space representations. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, p. 4475, October 2013. https://doi.org/10.1109/SMC.2013.760
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rahimi, M., Gibb, S., Shen, Y., La, H.M. (2019). A Comparison of Various Approaches to Reinforcement Learning Algorithms for Multi-robot Box Pushing. In: Fujita, H., Nguyen, D., Vu, N., Banh, T., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-04792-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-04792-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04791-7
Online ISBN: 978-3-030-04792-4
eBook Packages: EngineeringEngineering (R0)