Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interpretable Spiculation Quantification for Lung Cancer Screening

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11167))

Included in the following conference series:

Abstract

Spiculations are spikes on the surface of pulmonary nodule and are important predictors of malignancy in lung cancer. In this work, we introduced an interpretable, parameter-free technique for quantifying this critical feature using the area distortion metric from the spherical conformal (angle-preserving) parameterization. The conformal factor in the spherical mapping formulation provides a direct measure of spiculation which can be used to detect spikes and compute spike heights for geometrically-complex spiculations. The use of the area distortion metric from conformal mapping has never been exploited before in this context. Based on the area distortion metric and the spiculation height, we introduced a novel spiculation score. A combination of our spiculation measures was found to be highly correlated (Spearman’s rank correlation coefficient \(\rho = 0.48\)) with the radiologist’s spiculation score. These measures were also used in the radiomics framework to achieve state-of-the-art malignancy prediction accuracy of 88.9% on a publicly available dataset.

W. Choi and S. Nadeem—The first two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buty, M., Xu, Z., Gao, M., Bagci, U., Wu, A., Mollura, D.J.: Characterization of lung nodule malignancy using hybrid shape and appearance features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 662–670. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_77

    Chapter  Google Scholar 

  2. Choi, W., et al.: Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med. Phys. 45, 1537–1549 (2018)

    Article  Google Scholar 

  3. Dhara, A.K., Mukhopadhyay, S., Saha, P., Garg, M., Khandelwal, N.: Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. Int. J. Comput. Assist. Radiol. Surg. 11(3), 337–349 (2016)

    Article  Google Scholar 

  4. Hawkins, S., et al.: Predicting malignant nodules from screening CT scans. J. Thorac. Oncol. 11(12), 2120–2128 (2016)

    Article  Google Scholar 

  5. Kumar, D., Shafiee, M.J., Chung, A.G., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for computed tomography cancer detection. arXiv preprint arXiv:1509.00117 (2015)

  6. Liu, Y., et al.: Radiological image traits predictive of cancer status in pulmonary nodules. Clin. Cancer Res. 23, 1442–1449 (2016). clincanres-3102

    Article  Google Scholar 

  7. McKee, B.J., Regis, S.M., McKee, A.B., Flacke, S., Wald, C.: Performance of ACR Lung-RADS in a clinical CT lung screening program. J. Am. Coll. Radiol. 12(3), 273–276 (2015)

    Article  Google Scholar 

  8. McNitt-Gray, M.F., Armato, S.G., Meyer, C.R., Reeves, A.P., et al.: The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad. Radiol. 14(12), 1464–1474 (2007)

    Article  Google Scholar 

  9. McWilliams, A., Tammemagi, M.C., Mayo, J.R., Roberts, H., et al.: Probability of cancer in pulmonary nodules detected on first screening CT. New Engl. J. Med. 369(10), 910–919 (2013)

    Article  Google Scholar 

  10. Nadeem, S., Su, Z., Zeng, W., Kaufman, A., Gu, X.: Spherical parameterization balancing angle and area distortions. IEEE Trans. Vis. Comput. Graph. 23(6), 1663–1676 (2017)

    Article  Google Scholar 

  11. Niehaus, R., Raicu, D.S., Furst, J., Armato, S.: Toward understanding the size dependence of shape features for predicting spiculation in lung nodules for computer-aided diagnosis. J. Dig. Imaging 28(6), 704–717 (2015)

    Article  Google Scholar 

  12. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA: Cancer J. Clin. 66(1), 7–30 (2016)

    Google Scholar 

  13. Swensen, S.J., Silverstein, M.D., Ilstrup, D.M., Schleck, C.D., Edell, E.S.: The probability of malignancy in solitary pulmonary nodules: application to small radiologically indeterminate nodules. Arch. Intern. Med. 157(8), 849–855 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, W., Nadeem, S., Riyahi, S., Deasy, J.O., Tannenbaum, A., Lu, W. (2018). Interpretable Spiculation Quantification for Lung Cancer Screening. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04747-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04746-7

  • Online ISBN: 978-3-030-04747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics