Abstract
Spiculations are spikes on the surface of pulmonary nodule and are important predictors of malignancy in lung cancer. In this work, we introduced an interpretable, parameter-free technique for quantifying this critical feature using the area distortion metric from the spherical conformal (angle-preserving) parameterization. The conformal factor in the spherical mapping formulation provides a direct measure of spiculation which can be used to detect spikes and compute spike heights for geometrically-complex spiculations. The use of the area distortion metric from conformal mapping has never been exploited before in this context. Based on the area distortion metric and the spiculation height, we introduced a novel spiculation score. A combination of our spiculation measures was found to be highly correlated (Spearman’s rank correlation coefficient \(\rho = 0.48\)) with the radiologist’s spiculation score. These measures were also used in the radiomics framework to achieve state-of-the-art malignancy prediction accuracy of 88.9% on a publicly available dataset.
W. Choi and S. Nadeem—The first two authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buty, M., Xu, Z., Gao, M., Bagci, U., Wu, A., Mollura, D.J.: Characterization of lung nodule malignancy using hybrid shape and appearance features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 662–670. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_77
Choi, W., et al.: Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med. Phys. 45, 1537–1549 (2018)
Dhara, A.K., Mukhopadhyay, S., Saha, P., Garg, M., Khandelwal, N.: Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. Int. J. Comput. Assist. Radiol. Surg. 11(3), 337–349 (2016)
Hawkins, S., et al.: Predicting malignant nodules from screening CT scans. J. Thorac. Oncol. 11(12), 2120–2128 (2016)
Kumar, D., Shafiee, M.J., Chung, A.G., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for computed tomography cancer detection. arXiv preprint arXiv:1509.00117 (2015)
Liu, Y., et al.: Radiological image traits predictive of cancer status in pulmonary nodules. Clin. Cancer Res. 23, 1442–1449 (2016). clincanres-3102
McKee, B.J., Regis, S.M., McKee, A.B., Flacke, S., Wald, C.: Performance of ACR Lung-RADS in a clinical CT lung screening program. J. Am. Coll. Radiol. 12(3), 273–276 (2015)
McNitt-Gray, M.F., Armato, S.G., Meyer, C.R., Reeves, A.P., et al.: The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad. Radiol. 14(12), 1464–1474 (2007)
McWilliams, A., Tammemagi, M.C., Mayo, J.R., Roberts, H., et al.: Probability of cancer in pulmonary nodules detected on first screening CT. New Engl. J. Med. 369(10), 910–919 (2013)
Nadeem, S., Su, Z., Zeng, W., Kaufman, A., Gu, X.: Spherical parameterization balancing angle and area distortions. IEEE Trans. Vis. Comput. Graph. 23(6), 1663–1676 (2017)
Niehaus, R., Raicu, D.S., Furst, J., Armato, S.: Toward understanding the size dependence of shape features for predicting spiculation in lung nodules for computer-aided diagnosis. J. Dig. Imaging 28(6), 704–717 (2015)
Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA: Cancer J. Clin. 66(1), 7–30 (2016)
Swensen, S.J., Silverstein, M.D., Ilstrup, D.M., Schleck, C.D., Edell, E.S.: The probability of malignancy in solitary pulmonary nodules: application to small radiologically indeterminate nodules. Arch. Intern. Med. 157(8), 849–855 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Choi, W., Nadeem, S., Riyahi, S., Deasy, J.O., Tannenbaum, A., Lu, W. (2018). Interpretable Spiculation Quantification for Lung Cancer Screening. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-04747-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04746-7
Online ISBN: 978-3-030-04747-4
eBook Packages: Computer ScienceComputer Science (R0)