Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discrimination of Volumetric Shapes Using Orthogonal Tensor Decomposition

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11167))

Included in the following conference series:

Abstract

Organs, cells and microstructures in cells dealt with in medical image analysis are volumetric data. Sampled values of volumetric data are expressed as three-way array data. For the quantitative discrimination of multiway forms from the viewpoint of principal component analysis (PCA)-based pattern recognition, distance metrics for subspaces of multiway data arrays are desired. The paper aims to extend pattern recognition methodologies based on PCA for vector spaces to those for multilinear data. First, we extend the canonical angle between linear subspaces for vector-based pattern recognition to the canonical angle between multilinear subspaces for tensor-based pattern recognition. Furthermore, using transportation between the Stiefel manifolds, we introduce a new metric for a collection of linear subspaces. Then, we extend the transportation of between Stiefel manifolds in vector space to the transportation of the Stiefel manifolds in multilinear spaces for the discrimination analysis of multiway array data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jordan, C.: Essai sur la géométrie àn \(n\) dimensions. Bull. Soc. Math. France 3, 103–174 (1875)

    Article  MathSciNet  Google Scholar 

  2. Afriat, S.N.: Orthogonal and oblique projectors and the characterisation of pairs of vector spaces. Math. Proc. Cambridge Philos. Soc. 53, 800–816 (1957)

    Article  Google Scholar 

  3. Knyazev, A.V., Argentati, M.E.: Principal angles between subspaces in an a-based scalar product: algorithms and perturbation estimates. SIAM J. Sci. Comput. 23, 2009–2041 (2002)

    Article  MathSciNet  Google Scholar 

  4. Cock, K.D., Moor, B.D.: Subspace angles between ARMA models. Syst. Control Lett. 46, 265–270 (2002)

    Article  MathSciNet  Google Scholar 

  5. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  6. Stiefel, E.: Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comment. Math. Helv. 8, 305–353 (1935)

    Article  MathSciNet  Google Scholar 

  7. Hansen, P.-C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  8. Hansen, P.-C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  9. Chung, J., Knepper, S., Nagy, J.: Large-scale inverse problems in imaging. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 43–86. Springer, New York (2011). https://doi.org/10.1007/978-0-387-92920-0_2

    Chapter  MATH  Google Scholar 

  10. Iijima, T.: Pattern Recognition, Corona-sha (1974). (in Japanese)

    Google Scholar 

  11. Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley, Hoboken (1985)

    Google Scholar 

  12. Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press, Baldock (1983)

    Google Scholar 

  13. Otsu, N.: Mathematical Studies on Feature Extraction in Pattern Recognition, Researches of The Electrotechnical Laboratory, 818 (1981). (in Japanese)

    Google Scholar 

  14. Grenander, U., Miller, M.: Pattern Theory: From Representation to Inference. OUP, Oxford (2007)

    MATH  Google Scholar 

  15. Malcev, A.: Foundations of Linear Algebra. In: Russian, Gostekhizdat, 1948. English translation, W. H. Freeman and Company, New York (1963)

    Google Scholar 

  16. Cichocki, A., Zdunek, R., Phan, A.-H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  17. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers. ME. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16342-0

    Book  MATH  Google Scholar 

  18. Mørup, M.: Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 1, 24–40 (2011)

    Google Scholar 

  19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  20. Itoh, H., Imiya, A., Sakai, T.: Approximation of N-way principal component analysis for organ data. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10118, pp. 16–31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54526-4_2

    Chapter  Google Scholar 

  21. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Article  MathSciNet  Google Scholar 

  22. Turaga, P., Veeraraghavan, A., Chellappa, R.: Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision. In: IEEE CVPR, pp. 1–8 (2008)

    Google Scholar 

  23. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley, Hoboken (2008)

    Book  Google Scholar 

  24. Marron, J.M., Alonso, A.M.: Overview of object oriented data analysis. Biometrical J. 56, 732–753 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recognit. 43, 1642–1655 (2010)

    Article  Google Scholar 

  26. Nye, T.M.W.: Principal component analysis in the space of phylogenetic trees. Ann. Stat. 39, 2716–2739 (2011)

    Article  MathSciNet  Google Scholar 

  27. Fletcher, P., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE TMD 23, 995–1005 (2004)

    Google Scholar 

  28. Wong, Y.-C.: Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. 57, 589–594 (1967)

    Article  MathSciNet  Google Scholar 

  29. Absil, P.-A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Applicandae Math. 80, 199–220 (2004)

    Article  MathSciNet  Google Scholar 

  30. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the International Conference on Machine Learning, pp. 376–383 (2008)

    Google Scholar 

  31. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Sci. Comput. 26, 313–338 (2005)

    Article  Google Scholar 

  32. Roweis, S.T., Saul, K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  33. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12, 335–357 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya .

Editor information

Editors and Affiliations

Appendix

Appendix

Image SVD (imageSVD) [8, 9] for the image array \(\varvec{X}\in \mathbf{R}^{m\times n}\) establishes the decomposition

$$\begin{aligned} \varvec{X}=\varvec{U}\varvec{X}\varvec{V}^\top +\varvec{E}, \end{aligned}$$

where \(\varvec{U}\varvec{X}\varvec{V}^\top \) has low-rank and \(\varvec{E}\) is the residual error. This decomposition is performed by minimising \(|\varvec{E}|_{\mathrm {F}}^2\) with respect to the conditions

$$\begin{aligned} \varvec{U}^\top \varvec{U}= \left( \begin{array}{cc} \varvec{I}_{k},&{} \varvec{O}\\ \varvec{O},&{} \varvec{O} \end{array}\right) , \, \, \, \varvec{V}^\top \varvec{V}= \left( \begin{array}{cc} \varvec{I}_{l},&{} \varvec{O}\\ \varvec{O},&{} \varvec{O} \end{array}\right) \end{aligned}$$

for \(k\le m\) and \(l\le n\). Eigenmatrices of \(\varvec{X}\varvec{X}^\top \) and \(\varvec{X}^\top \varvec{X}\) derive matrices \(\varvec{U}\) and \(\varvec{V}\), respectively.

For a collection of \(m\times n\) matrices \(\{\varvec{X}_i\}_{i=1}^N\), where \(N\gg \max (m, n)\), we assume that

$$\begin{aligned} \frac{1}{N}\sum _{i=N}\varvec{X}_i=\varvec{O}. \end{aligned}$$

The matrix PCA derives a pair of matrices \(\varvec{U}\) and \(\varvec{V}\) by minimising the criterion

$$\begin{aligned} J(\varvec{U}, \varvec{V})=\frac{1}{N}\sum _{i=1}^N|\varvec{X}_i-\varvec{U}\varvec{X}\varvec{V}^\top |_{\mathrm {F}}^2 \end{aligned}$$

with the constraints \(\varvec{U}^\top \varvec{U}=\varvec{I}_{m}\) and \(\varvec{V}^\top \varvec{V}=\varvec{I}_{n}\). A pair of orthogonal matrices \(\varvec{U}\) and \(\varvec{V}\) are eigenmatrices of

$$\begin{aligned} \varvec{M}=\sum _{i=1}^N\varvec{X}_i\varvec{X}_i^\top , \, \, \varvec{N}=\sum _{i=1}^N\varvec{X}_i^\top \varvec{X}_i. \end{aligned}$$

For a pair of \(k\times m \times n\) three-ways \(\varvec{F}=((f_{\alpha \beta \gamma }))\) and \(\varvec{G}=(( g_{\alpha \beta \gamma }))\), Euclidean distance \(d_E\) and the transportation \(d_T\) of intensities are

$$\begin{aligned} d_E(\varvec{F},\varvec{G})^2= & {} \sum _{\alpha =1}^k\sum _{\beta =1}^m\sum _{\gamma =1}^n |f_{\alpha \beta \gamma }- g_{\alpha \beta \gamma }|^2\\ d_T(\varvec{F},\varvec{G})^2= & {} \min _{ c_{\alpha \alpha '\beta \beta '\gamma \gamma '} } \sum _{\alpha \, \alpha '=1}^k\sum _{\beta \, \beta '=1}^m \sum _{\gamma \, \gamma '=1}^n k_{\alpha \beta \gamma }^{\alpha '\beta '\gamma '} c_{\alpha \alpha '\beta \beta '\gamma \gamma '} \end{aligned}$$

with respect to

$$\begin{aligned} g_{\alpha '\beta '\gamma '}\ge \sum _{\alpha =1}^k\sum _{\beta =1}^m \sum _{\gamma =1}^n c_{\alpha \alpha '\beta \beta '\gamma \gamma '}, \, \, \, f_{\alpha \beta \gamma }\ge \sum _{\alpha '=1}^k\sum _{\beta '=1}^m \sum _{\gamma '=1}^n c_{\alpha \alpha '\beta \beta '\gamma \gamma '}, \, \, \, c_{\alpha \alpha '\beta \beta '\gamma \gamma '}\ge 0 \end{aligned}$$

for \( k_{\alpha \beta \gamma }^{\alpha '\beta '\gamma '} = |f_{\alpha \beta \gamma }- g_{\alpha '\beta '\gamma '}|^2\).

Fig. 3.
figure 3

Wasserstein distances between the first and jth frames in sequence of volumetric images. We use the sum of the singular values, the sum of the eigenvalues and the energy for constraints. The left, middle and right columns show the distances for the case of using sum of the singular values, sum of the eigenvalues and the energy, respectively, for constraints. The top, middle and bottom rows show the distances for \(p=1, 2, \infty \), respectively. The vertical axis represents the distance between frames. The horizontal axis represents the number j of the target frame.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Itoh, H., Imiya, A. (2018). Discrimination of Volumetric Shapes Using Orthogonal Tensor Decomposition. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04747-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04746-7

  • Online ISBN: 978-3-030-04747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics