Abstract
Cardiac motion contains information underlying disease development, and complements the anatomical information extracted for each subject. However, normalization of temporal trajectories is necessary due to anatomical differences between subjects. In this study, we encode inter-subject shape variations and temporal deformations in a common space of diffeomorphic registration. They are parameterized by stationary velocity fields. Previous normalization algorithms applied in medical imaging were first order approximations of parallel transport. In contrast, pole ladder was recently shown to be a third order scheme in general affine connection spaces and exact in one step in affine symmetric spaces. We further improve this procedure with a more symmetric mapping scheme, which relies on geodesic symmetries around mid-points. We apply the method to analyze cardiac motion among pulmonary hypertension populations. Evaluation is performed on a 4D cardiac database, with meshes of the right-ventricle obtained by commercial speckle-tracking from echo-cardiogram. We assess the stability of the algorithms by computing their numerical inverse error. Our method turns out to be very accurate and efficient in terms of compactness for subspace representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution mr images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26(1), 133–145 (2015)
Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D diffeomorphic atlas estimation: application to brain images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_81
Davis, M.H., Khotanzad, A., Flamig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE Trans. Med. Imaging 16(3), 317–328 (1997)
Duchateau, N., et al.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. 15(3), 316–328 (2011)
Gavrilov, A.V.: Algebraic properties of covariant derivative and composition of exponential maps. Matematicheskie Trudy 9(1), 3–20 (2006)
Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_38
Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder. J. Math. Imaging Vis. 50(1–2), 5–17 (2014)
Louis, M., Bône, A., Charlier, B., Durrleman, S.: Parallel transport in shape analysis: a scalable numerical scheme. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 29–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_4
Moceri, P., et al.: Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging 19, 450–458 (2017)
Pennec, X.: Parallel transport with pole ladder: a third order scheme in affine connection spaces which is exact in affine symmetric spaces. arXiv preprint arXiv:1805.11436 (2018)
Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40(1), 68–76 (2008)
Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_90
Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65, 113–134 (2007)
Acknowledgments
Part of the research was funded by the Agence Nationale de la Recherche (ANR)/ERA CoSysMed SysAFib project. The authors would like to thank fellows from Hôpital Pasteur, CHU de Nice, France for preparing the data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Jia, S., Duchateau, N., Moceri, P., Sermesant, M., Pennec, X. (2018). Parallel Transport of Surface Deformations from Pole Ladder to Symmetrical Extension. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-04747-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04746-7
Online ISBN: 978-3-030-04747-4
eBook Packages: Computer ScienceComputer Science (R0)