Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sublinear Graph Augmentation for Fast Query Implementation

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11312))

Included in the following conference series:

  • 480 Accesses

Abstract

We introduce the problem of augmenting graphs with sublinear memory in order to speed up replies to queries. As a concrete example, we focus on the following problem: the input is an (unpartitioned) bipartite graph \(G=(V,E)\). Given a query \(q \in V\), the algorithm’s goal is to output q’s color in some legal 2-coloring of G, using few probes to the graph. All replies have to be consistent with the same 2-coloring. We show that if a linear amount of preprocessing is allowed, there is a randomized algorithm that, for any \(\alpha \), uses \(O\left( \frac{m}{\alpha }\right) \) probes and \(\tilde{O}(\alpha )\) memory, where m is the number of edges in the graph. On the negative side, we show that for a natural family of algorithms that we call probe-first local computation algorithms, this trade-off is optimal even with unbounded preprocessing.

We describe a randomized algorithm that replies to queries using \(\tilde{O}\left( \frac{\sqrt{n}}{\varPhi ^2}\right) \) probes with no additional memory on regular graphs with conductance \(\varPhi \) (n is the number of vertices in G). In contrast, we show that any deterministic algorithm for regular graphs that uses no memory augmentation requires a linear (in n) number of probes, even if the conductance is the largest possible. We give an algorithm for grids and tori that uses a sublinear number of probes and no memory. Last, we give an algorithm for trees that errs on a sublinear number of edges (i.e., a sublinear number of edges are monochromatic under this coloring) that uses sublinear preprocessing, memory and probes per query.

Part of this work was done while the authors were visiting the Simons Institute for the Theory of Computing. Artur Czumaj was supported by the Centre for Discrete Mathematics and its Applications (DIMAP) and by EPSRC grant EP/N011163/1. Yishay Mansour was supported in part by the Israel Science Foundation (ISF). Shai Vardi was supported in part by the Linde Foundation and NSF grants CNS-1254169 and CNS-1518941.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Feige et al. [9], differentiate between strong and weak probes. Our definition of probe is consistent with their definition of weak probe, which is also the definition of probes used in the context of property testing by Goldreich and Ron [14] and others.

  2. 2.

    Alternatively, it is known that we can define it as \(d_{TV}(\mu , \nu )=\frac{1}{2}\sum _{\sigma \in \varOmega } |\mu (\sigma )-\nu (\sigma )|\).

References

  1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data reconstruction. Algorithmica 51(2), 160–182 (2008)

    Article  MathSciNet  Google Scholar 

  2. Aldous, D.J.: Random walks on finite groups and rapidly mixing Markov chains. Séminaire de probabilités de Strasbourg 17, 243–297 (1983). http://eudml.org/doc/113445

    MathSciNet  MATH  Google Scholar 

  3. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: Proceedings of 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1132–1139 (2012)

    Chapter  Google Scholar 

  4. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  Google Scholar 

  5. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 47–55 (1996)

    Google Scholar 

  6. Chechik, S.: Approximate distance oracles with constant query time. In: Symposium on Theory of Computing, STOC, pp. 654–663 (2014)

    Google Scholar 

  7. Czumaj, A., Monemizadeh, M., Onak, K., Sohler, C.: Planar graphs: random walks and bipartiteness testing. In: Proceedings of 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 423–432 (2011)

    Google Scholar 

  8. Even, G., Medina, M., Ron, D.: Best of two local models: local centralized and local distributed algorithms. CoRR abs/1402.3796 (2014). http://arxiv.org/abs/1402.3796

  9. Feige, U., Patt-Shamir, B., Vardi, S.: On the probe complexity of local computation algorithms. CoRR abs/1703.07734 (2017). http://arxiv.org/abs/1703.07734

  10. Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC, pp. 9–17 (2016)

    Google Scholar 

  11. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pp. 625–634 (2016)

    Google Scholar 

  12. Fung, W.S., Hariharan, R., Harvey, N.J.A., Panigrahi, D.: A general framework for graph sparsification. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 71–80 (2011)

    Google Scholar 

  13. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 270–277 (2016)

    Google Scholar 

  14. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs. Combinatorica 19(3), 335–373 (1999)

    Article  MathSciNet  Google Scholar 

  15. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)

    Article  MathSciNet  Google Scholar 

  16. Göös, M., Hirvonen, J., Levi, R., Medina, M., Suomela, J.: Non-local probes do not help with many graph problems. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 201–214. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_15

    Chapter  Google Scholar 

  17. Hassidim, A., Mansour, Y., Vardi, S.: Local computation mechanism design. ACM Trans. Econ. Comput. 4(4), 21:1–21:24 (2016). https://doi.org/10.1145/2956584

    Article  MathSciNet  Google Scholar 

  18. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 80–86 (2000)

    Google Scholar 

  19. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general graphs. SIAM J. Comput. 33(6), 1441–1483 (2004)

    Article  MathSciNet  Google Scholar 

  20. Lenzen, C., Levi, R.: A local algorithm for the sparse spanning graph problem. CoRR abs/1703.05418 (2017). http://arxiv.org/abs/1703.05418

  21. Levi, R., Ron, D., Rubinfeld, R.: Local algorithms for sparse spanning graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, pp. 826–842 (2014)

    Google Scholar 

  22. Levi, R., Ron, D., Rubinfeld, R.: A local algorithm for constructing spanners in minor-free graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pp. 38:1–38:15 (2016)

    Google Scholar 

  23. Levi, R., Rubinfeld, R., Yodpinyanee, A.: Brief announcement: local computation algorithms for graphs of non-constant degrees. In: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA, pp. 59–61 (2015)

    Google Scholar 

  24. London, P., Chen, N., Vardi, S., Wierman, A.: Distributed optimization via local computation algorithms (2017). http://users.cms.caltech.edu/~plondon/loco.pdf

    Article  Google Scholar 

  25. Mansour, Y., Patt-Shamir, B., Vardi, S.: Constant-time local computation algorithms. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6_10

    Chapter  MATH  Google Scholar 

  26. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_55

    Chapter  Google Scholar 

  27. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 260–273. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6_19

    Chapter  MATH  Google Scholar 

  28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  29. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  Google Scholar 

  30. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  Google Scholar 

  31. Reingold, O., Vardi, S.: New techniques and tighter bounds for local computation algorithms. J. Comput. Syst. Sci. 82(7), 1180–1200 (2016)

    Article  MathSciNet  Google Scholar 

  32. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Proceedings of 2nd Symposium on Innovations in Computer Science (ICS), pp. 223–238 (2011)

    Google Scholar 

  33. Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM J. Comput. 39(7), 2897–2926 (2010)

    Article  MathSciNet  Google Scholar 

  34. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inf. Comput. 82(1), 93–133 (1989)

    Article  MathSciNet  Google Scholar 

  35. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913–1926 (2011)

    Article  MathSciNet  Google Scholar 

  36. Thorup, M., Zwick, U.: Approximate distance oracles. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, (STOC), pp. 183–192 (2001)

    Google Scholar 

  37. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10 (2001)

    Google Scholar 

  38. Wulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 202–208 (2012)

    Chapter  Google Scholar 

  39. Yekhanin, S.: Locally decodable codes. Found. Trends Theor. Comput. Sci. 6(3), 139–255 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Vardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czumaj, A., Mansour, Y., Vardi, S. (2018). Sublinear Graph Augmentation for Fast Query Implementation. In: Epstein, L., Erlebach, T. (eds) Approximation and Online Algorithms. WAOA 2018. Lecture Notes in Computer Science(), vol 11312. Springer, Cham. https://doi.org/10.1007/978-3-030-04693-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04693-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04692-7

  • Online ISBN: 978-3-030-04693-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics