Nothing Special   »   [go: up one dir, main page]

Skip to main content

Heterogeneous Non Obtrusive Platform to Monitor, Assist and Provide Recommendations to Elders at Home: The MoveCare Platform

  • Conference paper
  • First Online:
Ambient Assisted Living (ForItAAL 2017)

Abstract

MoveCare develops and field tests an innovative multi-actor platform that supports the independent living of the elder at home by monitoring, assist and promoting activities to counteract decline and social exclusion. It is being developed under H2020 framework and it comprises 3 hierarchical layers: (1) A service layer provides monitoring and intervention. It endows objects of everyday use with advanced processing capabilities and integrates them in a distributed pervasive monitoring system to derive degradation indexes linked to decline. (2) A context-aware Virtual Caregiver, embodied into a service robot, is the core layer. It uses artificial intelligence and machine learning to propose to the elder a personalized mix of physical/cognitive/social activities as exer-games. It evaluates the elder status, detects risky conditions, sends alerts and assists in critical tasks, in therapy and diet adherence. (3) The users’ community strongly promotes socialization acting as a bridge towards the elders’ ecosystem: other elders, clinicians, caregivers and family. Gamification glues together monitoring, lifestyle, activities and assistance inside a motivating and rewarding experience. More information can be found at http://www.movecare-project.eu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_struc-ture_and_ageing.

  2. http://www.statista.com/statistics/274514/life-expectancy-in-europe/.

  3. http://data.worldbank.org/indicator/SP.POP.DPND.OL.

  4. http://www.companionable.net/.

  5. http://www.innovation4welfare.eu/307/subprojects/robo-m-d.html.

  6. http://www.aal-domeo.eu.

  7. http://www.aal-europe.eu/projects/excite/.

  8. http://www.giraffplus.eu/.

  9. http://www.oldes.eu/.

  10. http://www.aal-europe.eu/projects/we-care/.

  11. http://www.cip-reaal.eu/home/.

  12. http://www.saapho-aal.eu/.

  13. http://www.signomotus.it/h_cad_site/.

  14. http://www.caretoy.eu/.

  15. http://www.movecare-project.eu/.

  16. Stuck, A. E., Siu, A. L., et al. (1993). Comprehensive geriatric assessment: A meta-analysis of controlled trials. The Lancet, 342, 1032.

    Article  Google Scholar 

  17. Action Plan on “Prevention and early diagnosis of frailty and functional decline, both physical and cognitive, in older people” of the European Innovation Partnership on Active and Healthy Ageing (Bruxelles, November 6, 2012).

    Google Scholar 

  18. Apóstolo, J., Cooke, R., et al. (2016). Effectiveness of the interventions in preventing the progression of pre-frailty and frailty in older adults: A systematic review protocol. JBI Database of Systematic Reviews and Implementation Reports, 14(1), 4–19.

    Article  Google Scholar 

  19. http://www.giraff.org.

  20. http://www.partecipami.it/.

  21. Pirovano, M., Mainetti, R., Baud-Bovy, G., Lanzi, P. L., & Borghese, N. A. (2016). IGER—Intelligent game engine for rehabilitation. IEEE Transactions on CIAIG, 8(1), 43–55.

    Google Scholar 

  22. Polinder, S., & The EUROCOST Reference Group. (2005). Cost estimation of injury-related hospital admissions in 10 European Countries. Journal of Trauma, 59(6), 1283–1291.

    Google Scholar 

  23. Howcroft, J., et al. (2013). Review of fall risk assessment in geriatric populations using inertial sensors. Journal of Neuroengineering and Rehabilitation, 10, 91.

    Article  Google Scholar 

  24. Riva, F., et al. (2013). Orbital stability analysis in biomechanics: A systematic review of a non linear technique to detect instability of motor tasks. Gait & Posture, 37, 1–11.

    Article  Google Scholar 

  25. http://profound.eu.com/e-no-falls/.

  26. http://www.fareseeingresearch.eu/.

  27. http://www.project-fate.eu/.

  28. http://www.idontfall.eu/.

  29. http://www.istopfalls.eu/.

  30. Das, R., & Kumar, N. (2015). Investigations on postural stability and spatiotemporal parameters of human gait using developed wearable smart insole. Journal of Medical Engineering & Technology, 39(1), 75–78.

    Article  MathSciNet  Google Scholar 

  31. http://www.wiisel.eu.

  32. Howcroft, J.D., Lemaire, E.D., Kofman, J., & McIlroy, W.E. (2014). Analysis of dual-task elderly gait using wearable plantar-pressure insoles and accelerometer. In Proceedings of IEEE Engineering Medical and Biology Society Conference (pp. 5003–5006).

    Google Scholar 

  33. Hassan, M., et al. (2014). Wearable gait measurement system with an instrumented cane for exoskeleton control. Sensors, 14, 1705–1722.

    Article  Google Scholar 

  34. Fellows, R. P., Dahmen, J., Cook, D., & Schmitter-Edgecombe, M. (2017). Multicomponent analysis of a digital trail making test. The Clinical Neuropsychologist, 31(1), 154–167.

    Article  Google Scholar 

  35. Gauthier, L., Dehaut, F., & Joanette, Y. (1989). The bells test: A quantitative and qualitative test for visual neglect. International Journal of Clinical Neuropsychology, 11, 49–54.

    Google Scholar 

  36. Jacobsen, E., & Lyons, R. (2003). The sliding DFT. Signal Processing Magazine, 20(2), 74–80.

    Article  Google Scholar 

  37. Naylor, P. A., Kounoudes, A., Gudnason, J., & Brookes, M. (2007). Estimation of glottal closure instants in voice speech using the DYPSA algorithm. IEEE Transactions on Audio, Speech and Language Processing, 15(1), 34–43.

    Article  Google Scholar 

  38. Busso, C., Lee, S., & Narayanan, S. (2009). Analysis of emotionally salient aspects of fundamental frequency for emotion detection. IEEE Transactions on Audio, Speech, and Language Processing, 17(4), 582–596.

    Article  Google Scholar 

  39. Mower, E., Mataric, M. J., & Narayanan, S. (2011). A framework for automatic human emotion classification using emotion profiles. IEEE Transactions on Audio, Speech, and Language Processing, 19(5), 1057–1070.

    Article  Google Scholar 

  40. Dallaert, F., Polzin, T., & Waibe, A. (1996). Recognizing emotion in speech. In Proceedings of International Conference on Spoken Language LP 96.

    Google Scholar 

  41. König, A., Satt, A., Sorin, A., et al. (2014). Automatic speech analysis for the assessment of pre-demented and Alzheimer patients. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring Journal, 1(1), 112–124.

    Google Scholar 

  42. Dixit, V., Mittal, V., & Sharma, Y. (2014). Voice parameter analysis for the disease detection. IOSR Journal of Electronics and Communication Engineering, 9(3), 48–55.

    Article  Google Scholar 

  43. Meilan, D., et al. (2014). Speech in Alzheimer’s disease: Can temporal and acoustic parameters discriminate dementia? Dementia and Geriatric Cognitive Disorders, 37, 327–334.

    Article  Google Scholar 

  44. Bickmore, T., & Picard, R. (2005). Establishing and maintaining long-term human-computer relationships. ACM Transactions CHI, 12(2), 293–327.

    Google Scholar 

  45. Fasola, J., & Mataric, M. J. (2012). Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proceedings of IEEE, 100(8), 2512–2526.

    Article  Google Scholar 

  46. Seyama, J., & Nagayama, R. S. (2007). The uncanny valley: Effect of realism on the impression of artificial human faces. Presence, 16(4), 337–351.

    Article  Google Scholar 

  47. Ullberg, J., Loutfi, A., & Pecora, F. (2014). A customizable approach for monitoring activities of elderly users in their homes. Activity monitoring by multiple distributed sensing (pp. 13–25). Berlin: Springer International Publishing.

    Google Scholar 

  48. van Beek, P., & Manchak, D. W. (1996). The design and experimental analysis of algorithms for temporal reasoning. Journal of Artificial Intelligence Research, 4, 1–18.

    Article  Google Scholar 

  49. Bellocchio, F., Ferrari, S., Piuri, V., & Borghese, N. A. (2010). A hierarchical RBF online learning algorithm for real-time 3-D scanner. IEEE Transactions on Neural Networks, 21(2), 275–285.

    Article  Google Scholar 

  50. Bellocchio, F., Ferrari, S., Piuri, V., & Borghese, N. A. (2012). Hierarchical approach for multiscale support vector regression. IEEE Transactions on Neural Networks and Learning Systems, 23(9), 1448–1460.

    Article  Google Scholar 

  51. Coradeschi, S., Cesta, A., Cortellessa G., et al. (2014). GiraffPlus: A system for monitoring activities and physiological parameters and promoting social interaction for elderly. In Human-computer systems interaction: Backgrounds and applications (Vol. 3, pp. 261–271). Berlin: Springer International Publishing.

    Google Scholar 

  52. Kahler, O., Prisacariu, V.A., & Murray, D. (2016). Real-time large-scale dense 3D reconstruction with loop closure. In Proceeding of ECCV 2016.

    Chapter  Google Scholar 

  53. Jaimez, M., Blanco, J. L., & Gonzalez-Jimenez, J. (2015). Efficient reactive navigation with exact collision determination for 3D robot shapes. International Journal of Advanced Robotic Systems, 12(5), 63.

    Article  Google Scholar 

  54. Ren, C.Y., Prisacariu, V.A., Kahler, O., Murray, D.W., & Reid, I.D. (2016). Dense reconstruction and tracking of multiple 3D objects from depth-colour imagery. International Journal of Computer Vision.

    Google Scholar 

  55. Breazeal, C., et al. (2005). Effects of nonverbal communication on efficiency and robustness in human-robot teamwork. In Intelligent Robots and Systems (pp. 708–713).

    Google Scholar 

  56. http://www.sparkpeople.com/.

  57. http://www.dlife.com/.

  58. http://www.stupidcancer.org/.

  59. http://www.smart-com.si/solutions/r-d-solutions/care-signal/caresignal-for-inde-pendent-living-at-home.

  60. Borghese, N.A., Mainetti, R., Essenziale, J., Cavalli, E., Mancon, E.M., & Pajardi, G. (2017). Hand rehabilitation with toys with embedded sensors. In J. Ibáñez, J. González-Vargas, J. María Azorín, M. Akay, & J.L. Pons (Eds.), Converging clinical and engineering research on neurorehabilitation II, Proceeding of. ICNR2017 (pp. 426–430).

    Google Scholar 

  61. Bevan, N. (2009). Extending quality in use to provide a framework for usability measurement. In HCD 09: Proceeding of First International Conference on Human Centered Design (pp. 13–22). Springer.

    Google Scholar 

  62. Hassenzahl, M. (2013). The thing and I: Understanding the relationship between user and product. In M.A. Blythe & K. Verbeeke (Eds.), Engineering computers (Vol. 29, pp. 359–373).

    Google Scholar 

  63. Monk, A. F. (Ed.). (2004). Funology: From usability to enjoyment (human–computer interaction series) (pp. 31–42). Norwell: Kluwer Academic Publishers.

    Google Scholar 

  64. Steinfeld, A., Fong, T., et al. (2006). Common metrics for human-robot interaction. In Proceeding of the 1st ACM/IEEE International Conference on Human Robot Interaction.

    Google Scholar 

Download references

Acknowledgements

This work has been funded by EC grant N. 732158, MoveCare, under the call H2020-ICT-26b-2016 System abilities, development and pilot installations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Borghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borghese, N. et al. (2019). Heterogeneous Non Obtrusive Platform to Monitor, Assist and Provide Recommendations to Elders at Home: The MoveCare Platform. In: Casiddu, N., Porfirione, C., Monteriù, A., Cavallo, F. (eds) Ambient Assisted Living. ForItAAL 2017. Lecture Notes in Electrical Engineering, vol 540. Springer, Cham. https://doi.org/10.1007/978-3-030-04672-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04672-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04671-2

  • Online ISBN: 978-3-030-04672-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics