Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fused Lasso Dimensionality Reduction of Highly Correlated NWP Features

  • Conference paper
  • First Online:
Data Analytics for Renewable Energy Integration. Technologies, Systems and Society (DARE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11325))

  • 628 Accesses

Abstract

Two problems when using Numerical Weather Prediction features in Machine Learning are the high dimensionality inherent to the current high-resolution models, and the high correlation of the features, which can affect the performance of learning machines as Multilayer Perceptron (MLP). In this work we propose to reduce the dimension of the problem using a supervised Fused Lasso model, which generates meta-features corresponding to the average of the groups with constant coefficients. The Fused Lasso problem is defined in terms of the feature correlation graph and tries to retain features with the stronger connections. As shown experimentally, training the models over the correlation graph-based reduced dataset allows to decrease the overall computational time while preserving almost the same error in the case of Support Vector Regressors and even improving the error of the MLPs, if the original dimension is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbero, A., Sra, S.: Fast newton-type methods for total variation regularization. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 313–320. Citeseer (2011)

    Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bühlmann, P., Rütimann, P., van de Geer, S., Zhang, C.H.: Correlated variables in regression: clustering and sparse estimation. J. Stat. Plan. Inference 143(11), 1835–1858 (2013)

    Article  MathSciNet  Google Scholar 

  4. Catalina, A., Dorronsoro, J.R.: NWP ensembles for wind energy uncertainty estimates. In: Woon, W.L., Aung, Z., Kramer, O., Madnick, S. (eds.) DARE 2017. LNCS (LNAI), vol. 10691, pp. 121–132. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71643-5_11

    Chapter  Google Scholar 

  5. Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013)

    Article  Google Scholar 

  6. Díaz, D., Torres, A., Dorronsoro, J.R.: Deep neural networks for wind energy prediction. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 430–443. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19258-1_36

    Chapter  Google Scholar 

  7. Figueiredo, M., Nowak, R.: Ordered weighted l1 regularized regression with strongly correlated covariates: theoretical aspects. In: Artificial Intelligence and Statistics, pp. 930–938 (2016)

    Google Scholar 

  8. Grave, E., Obozinski, G., Bach, F.: Trace lasso: a trace norm regularization for correlated designs. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS 2011. pp. 2187–2195 (2011)

    Google Scholar 

  9. Hallac, D., Leskovec, J., Boyd, S.: Network lasso: clustering and optimization in large graphs. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 387–396 (2015)

    Google Scholar 

  10. Hernan Madrid Padilla, O., Scott, J.G., Sharpnack, J., Tibshirani, R.J.: The DFS Fused Lasso: Linear-Time Denoising over General Graphs. ArXiv e-prints, August 2016

    Google Scholar 

  11. Li, Y., Raskutti, G., Willett, R.: Graph-based regularization for regression problems with highly-correlated designs. ArXiv e-prints, March 2018

    Google Scholar 

  12. Lorbert, A., Eis, D., Kostina, V., Blei, D., Ramadge, P.: Exploiting covariate similarity in sparse regression via the pairwise elastic net. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, PMLR, Chia Laguna Resort, Sardinia, Italy, vol. 9, pp. 477–484, 13–15 May 2010

    Google Scholar 

  13. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)

    Article  MathSciNet  Google Scholar 

  14. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  15. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

With partial support from Spain’s grants TIN2016-76406-P and S2013/ICE-2845 CASI-CAM-CM. Work supported also by project FACIL–Ayudas Fundación BBVA a Equipos de Investigación Científica 2016, and the UAM–ADIC Chair for Data Science and Machine Learning. We thank Red Eléctrica de España for making available wind energy data and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM. We also thank the Agencia Española de Meteorología, AEMET, and the ECMWF for access to the MARS repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Catalina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Catalina, A., Alaíz, C.M., Dorronsoro, J.R. (2018). Fused Lasso Dimensionality Reduction of Highly Correlated NWP Features. In: Woon, W., Aung, Z., Catalina Feliú, A., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. Technologies, Systems and Society. DARE 2018. Lecture Notes in Computer Science(), vol 11325. Springer, Cham. https://doi.org/10.1007/978-3-030-04303-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04303-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04302-5

  • Online ISBN: 978-3-030-04303-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics