Abstract
Rapid and quantitative magnetic resonance \(T_{2}\) imaging plays an important role in medical imaging field. However, the existing quantitative \(T_{2}\) mapping method are usually time-consuming and sensitive to motion artifacts. Recently, a novel single-shot quantitative parameter mapping method based on overlapped-echo detachment technique has been proposed by us, but an efficient reconstruction algorithm is necessary. In this paper, a multi-stage DenseNet was utilized to reconstruct single-shot \(T_{2}\) mapping efficiently. The contributions of the paper mainly include the following aspects. First, an end-to-end neural network is proposed, which can directly obtain the reconstructed images without any secondary processing. Second, DenseNet was introduced into the reconstruction network to better reuse the features. Third, a weighted Euclidean loss function is proposed, which can be better used for image reconstruction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ma, D., et al.: Magnetic resonance fingerprinting. Nature 495(7440), 187–192 (2013)
Townsend, T.N., Bernasconi, N., Pike, G.B., Bernasconi, A.: Quantitative analysis of temporal lobe white matter t2 relaxation time in temporal lobe epilepsy. Neuroimage 23(1), 318–324 (2004)
Cai, C., et al.: Single-shot t2 mapping through overlapping-echo detachment (OLED) planar imaging. IEEE Trans. Biomed. Eng. 64(10), 2450–2461 (2017)
Ma, L., et al.: Motion-tolerant diffusion mapping based on single-shot overlapping-echo detachment (OLED) planar imaging. Magn. Reson. Med. 80(1), 200–210 (2018)
Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)
Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., Heng, P.-A.: Automated pulmonary nodule detection via 3D convnets with online sample filtering and hybrid-loss residual learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 630–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_72
Han, S.S., Kim, M.S., Lim, W., Park, G.H., Park, I., Chang, S.E.: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. Journal of Investigative Dermatology (2018)
Cai, C., et al.: Single-shot t2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network. Magnetic resonance in medicine (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)
Cai, C., Lin, M., Chen, Z., Chen, X., Cai, S., Zhong, J.: Sprom-an efficient program for NMR/MRI simulations of inter-and intra-molecular multiple quantum coherences. Comptes Rendus Physique 9(1), 119–126 (2008)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
Tieleman, T., Hinton, G.: Rmsprop gradient optimization (2014). http://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
Acknowledgement
This work was supported by National Natural Science Foundation of China; Grant numbers: 81671674 and 61571382.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, C., Wu, Y., Ding, X., Huang, Y., Cai, C. (2018). High Efficient Reconstruction of Single-Shot Magnetic Resonance \(T_{2}\) Mapping Through Overlapping Echo Detachment and DenseNet. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-04224-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04223-3
Online ISBN: 978-3-030-04224-0
eBook Packages: Computer ScienceComputer Science (R0)