Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Artificial Neural Network for Distributed Constrained Optimization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

  • 2344 Accesses

Abstract

This paper studies the distributed convex optimization problems, where the objective function can be expressed as the sum of nonsmooth local convex objective functions. By the virtue of KKT conditions, an artificial neural network is presented to solve the distributed convex optimization problems with inequality and equality constraints. And it is shown that the state solution of the artificial neural network converges to the optimal solution to the original optimization problem. Compared with the existing continuous time algorithms, the provided algorithm has the advantages of lower model complexity and easy implementation. Finally, a numerical example displays the practicality of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gharesifard, B., Cortés, J.: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Autom. Control 59(3), 781–786 (2014)

    Article  MathSciNet  Google Scholar 

  2. Kazakov, D., Kudenko, D.: Machine learning and inductive logic programming for multi-agent systems. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001. LNCS (LNAI), vol. 2086, pp. 246–270. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47745-4_11

    Chapter  MATH  Google Scholar 

  3. Kia, S.S., Cort, J., Martnez, S.: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55, 254–264 (2015)

    Article  MathSciNet  Google Scholar 

  4. Li, Z., Ding, Z., Sun, J., Li, Z.: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms. IEEE Trans. Autom. Control 63(5), 1434–1441 (2018)

    Article  MathSciNet  Google Scholar 

  5. Liu, Q., Yang, S., Wang, J.: A collective neurodynamic approach to distributed constrained optimization. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1747–1758 (2017)

    Article  MathSciNet  Google Scholar 

  6. Liu, Q., Wang, J.: A second-order multi-agent network for bound-constrained distributed optimization. IEEE Trans. Autom. Control 60(12), 3310–3315 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lu, J., Tang, C.: Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case. IEEE Trans. Autom. Control 57(9), 2348–2354 (2011)

    Article  MathSciNet  Google Scholar 

  8. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)

    Article  MathSciNet  Google Scholar 

  9. Nedic, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    Article  MathSciNet  Google Scholar 

  10. Nowzari, C.: Distributed Event-Triggered Coordination for Average Consensus on Weight-Balanced Digraphs. Pergamon Press Inc., Oxford (2016)

    MATH  Google Scholar 

  11. Qin, S., Bian, W., Xue, X.: A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization. Neurocomputing 120, 655–662 (2013)

    Article  Google Scholar 

  12. Qin, S., Fan, D., Wu, G., Zhao, L.: Neural network for constrained nonsmooth optimization using Tikhonov regularization. Neural Netw. 63, 272–281 (2015)

    Article  Google Scholar 

  13. Qin, S., Feng, J., Song, J., Wen, X., Xu, C.: A one-layer recurrent neural network for constrained complex-variable convex optimization. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2016)

    Article  Google Scholar 

  14. Qin, S., Yang, X., Xue, X., Song, J.: A one-layer recurrent neural network for pseudoconvex optimization problems with equality and inequality constraints. IEEE Trans. Cybern. 47(10), 3063–3074 (2017)

    Article  Google Scholar 

  15. Qiu, Z., Liu, S., Xie, L.: Distributed constrained optimal consensus of multi-agent systems. Automatica 68, 209–215 (2016)

    Article  MathSciNet  Google Scholar 

  16. Rich, E.: Artificial Intelligence. E. Horwood (1985)

    Google Scholar 

  17. Shi, G., Johansson, K.H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Autom. Control 58(3), 610–622 (2013)

    Article  MathSciNet  Google Scholar 

  18. Wang, J., Elia, N.: A control perspective for centralized and distributed convex optimization. In: Decision and Control and European Control Conference, pp. 3800–3805 (2011)

    Google Scholar 

  19. Wei, E., Ozdaglar, A., Jadbabaie, A.: A distributed newton method for network utility maximization. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 1816–1821 (2010)

    Google Scholar 

  20. White, S.M.: Social engineering. In: IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, 2003 Proceedings, pp. 261–267 (2003)

    Google Scholar 

  21. Yang, S., Liu, Q., Wang, J.: Distributed optimization based on a multiagent system in the presence of communication delays. IEEE Trans. Syst. Man Cybern. Syst. 47(5), 717–728 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (61773136, 11471088) and the NSF project of Shandong province in China with granted No. ZR2014FM023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitian Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, N., Jia, W., Qin, S., Li, G. (2018). An Artificial Neural Network for Distributed Constrained Optimization. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics