Abstract
With the development of deep learning, zero-shot learning (ZSL) issues deserve more attention. Due to the problems of projection domain shift and discriminative feature extraction, we propose an end-to-end framework, which is different from traditional ZSL methods in the following two aspects: (1) we use a cascaded network to automatically locate discriminative regions, which can better extract latent features and contribute to the representation of key semantic attributes. (2) our framework achieves mapping in visual-semantic embedding space and calculation procedure of the dot product in deep learning framework. In addition, a joint loss function is designed for the regularization constraint of the whole method and achieves supervised learning, which enhances generalization ability in test set. In this paper, we make some experiments on Animals with Attributes 2 (AwA2), Caltech-UCSD Birds 200-2011 (CUB) and SUN datasets, which achieves better results compared to the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. TPAMI 38(7), 1425–1438 (2016)
Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: CVPR, pp. 2927–2936. IEEE Press, Boston (2015)
Blitzer, J., Foster, D.P., Kakade, S.M.: Zero-shot domain adaptation: a multi-view approach. Technical report, TTI-TR-2009-1. Toyota Technological Institute, Chicago (2009)
Ding, Z., Shao, M., Fu, Y.: Low-rank embedded ensemble semantic dictionary for zero-shot learning. In: CVPR, pp. 2050–2058. IEEE Press, Honolulu (2017)
Fouhey, D., Gupta, A., Zisserman, A.: From images to 3D shape attributes. TPAMI 1(1), 1–14 (2017)
Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for ne-grained image recognition. In: CVPR, pp. 4476–4484. IEEE Press, Honolulu (2017)
Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Learning multi-modal latent attributes. TPAMI 36(2), 303–316 (2014)
Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. TPAMI 37(11), 2332–2345 (2015)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR, pp. 951–958. IEEE Press, Miami (2009)
Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. TPAMI 36(3), 453–465 (2014)
Lazaridou, A., Dinu, G., Baroni, M.: Hubness and pollution: delving into class-space mapping for zero-shot learning. In: IJCNLP, pp. 270–280. ACL, Beijing (2015)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119. Curran Associates, Long Beach (2013)
Morgado, P., Vasconcelos, N.: Semantically consistent regularization for zero-shot recognition. In: CVPR, pp. 10–16. IEEE Press, Honolulu (2017)
Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: CVPR, pp. 2751–2758. IEEE Press, Providence (2012)
Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. TPAMI 40(7), 1625–1638 (2017)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543. ACL, Doha (2014)
Romera-Paredes, B., Torr, P.H.S.: An embarrassingly simple approach to zero-shot learning. Visual Attributes. ACVPR, pp. 11–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50077-5_2
Tian, Y., Zhang, W., Zhang, Q., Lu, G., Wu, X.: Selective multi-convolutional region feature extraction based iterative discrimination CNN for fine-grained vehicle model recognition. In: ICPR, pp. 3279–3284. IEEE Press, Beijing (2018)
Welinder, P., et al.: Caltech-UCSD birds 200. Technical report CNS-TR-2010-001, California Institute of Technology (CIT) (2010)
Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Zero-shot recognition via structured prediction. In: CVPR, pp. 69–77. IEEE Press, Las Vegas (2016)
Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. In: CVPR, pp. 3077–3086. IEEE Press, Honolulu (2017)
Zhang, Z., Saligrama, V.: Zero-shot learning via joint latent similarity embedding. In: CVPR, pp. 6034–6042. IEEE Press, Las Vegas (2016)
Zhang, Z., Saligrama, V.: Zero-shot recognition via structured prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 533–548. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_33
Acknowledgments
This work was supported by National Natural Science Foundation of China (61772508, 61801428, U1713213), National Key R&D Program of China (2017YFB1402100), Zhejiang Provincial Natural Science Foundation (LY18F020034), Natural Science Basic Research Plan in Shaanxi Province of China (2017JM6101, 2017JM6060, 2017JQ6077, 2017JM6103), Guangdong Technology Project (2016B010108010, 2016B010125003, 2017B010110007), CAS Key Technology Talent Program, Shenzhen Engineering Laboratory for 3D Content Generating Technologies ([2017]476), Shenzhen Technology Project (JCYJ 20170413152535587, JSGG20160331185256983, JSGG20160229115709109), Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, CAS (2014DP173025), Fundamental Research Funds for the Central Universities (GK201703060, GK201801004), Teaching Reform and Research Project of Shaanxi Normal University (17JG33).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Tian, Y., Zhang, W., Zhang, Q., Cheng, J., Hao, P., Lu, G. (2018). Co-consistent Regularization with Discriminative Feature for Zero-Shot Learning. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-04167-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04166-3
Online ISBN: 978-3-030-04167-0
eBook Packages: Computer ScienceComputer Science (R0)