Nothing Special   »   [go: up one dir, main page]

Skip to main content

Co-consistent Regularization with Discriminative Feature for Zero-Shot Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

  • 3942 Accesses

Abstract

With the development of deep learning, zero-shot learning (ZSL) issues deserve more attention. Due to the problems of projection domain shift and discriminative feature extraction, we propose an end-to-end framework, which is different from traditional ZSL methods in the following two aspects: (1) we use a cascaded network to automatically locate discriminative regions, which can better extract latent features and contribute to the representation of key semantic attributes. (2) our framework achieves mapping in visual-semantic embedding space and calculation procedure of the dot product in deep learning framework. In addition, a joint loss function is designed for the regularization constraint of the whole method and achieves supervised learning, which enhances generalization ability in test set. In this paper, we make some experiments on Animals with Attributes 2 (AwA2), Caltech-UCSD Birds 200-2011 (CUB) and SUN datasets, which achieves better results compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. TPAMI 38(7), 1425–1438 (2016)

    Article  Google Scholar 

  2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: CVPR, pp. 2927–2936. IEEE Press, Boston (2015)

    Google Scholar 

  3. Blitzer, J., Foster, D.P., Kakade, S.M.: Zero-shot domain adaptation: a multi-view approach. Technical report, TTI-TR-2009-1. Toyota Technological Institute, Chicago (2009)

    Google Scholar 

  4. Ding, Z., Shao, M., Fu, Y.: Low-rank embedded ensemble semantic dictionary for zero-shot learning. In: CVPR, pp. 2050–2058. IEEE Press, Honolulu (2017)

    Google Scholar 

  5. Fouhey, D., Gupta, A., Zisserman, A.: From images to 3D shape attributes. TPAMI 1(1), 1–14 (2017)

    Article  Google Scholar 

  6. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for ne-grained image recognition. In: CVPR, pp. 4476–4484. IEEE Press, Honolulu (2017)

    Google Scholar 

  7. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Learning multi-modal latent attributes. TPAMI 36(2), 303–316 (2014)

    Article  Google Scholar 

  8. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. TPAMI 37(11), 2332–2345 (2015)

    Article  Google Scholar 

  9. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR, pp. 951–958. IEEE Press, Miami (2009)

    Google Scholar 

  10. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. TPAMI 36(3), 453–465 (2014)

    Article  Google Scholar 

  11. Lazaridou, A., Dinu, G., Baroni, M.: Hubness and pollution: delving into class-space mapping for zero-shot learning. In: IJCNLP, pp. 270–280. ACL, Beijing (2015)

    Google Scholar 

  12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119. Curran Associates, Long Beach (2013)

    Google Scholar 

  13. Morgado, P., Vasconcelos, N.: Semantically consistent regularization for zero-shot recognition. In: CVPR, pp. 10–16. IEEE Press, Honolulu (2017)

    Google Scholar 

  14. Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: CVPR, pp. 2751–2758. IEEE Press, Providence (2012)

    Google Scholar 

  15. Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. TPAMI 40(7), 1625–1638 (2017)

    Article  Google Scholar 

  16. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543. ACL, Doha (2014)

    Google Scholar 

  17. Romera-Paredes, B., Torr, P.H.S.: An embarrassingly simple approach to zero-shot learning. Visual Attributes. ACVPR, pp. 11–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50077-5_2

    Chapter  Google Scholar 

  18. Tian, Y., Zhang, W., Zhang, Q., Lu, G., Wu, X.: Selective multi-convolutional region feature extraction based iterative discrimination CNN for fine-grained vehicle model recognition. In: ICPR, pp. 3279–3284. IEEE Press, Beijing (2018)

    Google Scholar 

  19. Welinder, P., et al.: Caltech-UCSD birds 200. Technical report CNS-TR-2010-001, California Institute of Technology (CIT) (2010)

    Google Scholar 

  20. Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Zero-shot recognition via structured prediction. In: CVPR, pp. 69–77. IEEE Press, Las Vegas (2016)

    Google Scholar 

  21. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. In: CVPR, pp. 3077–3086. IEEE Press, Honolulu (2017)

    Google Scholar 

  22. Zhang, Z., Saligrama, V.: Zero-shot learning via joint latent similarity embedding. In: CVPR, pp. 6034–6042. IEEE Press, Las Vegas (2016)

    Google Scholar 

  23. Zhang, Z., Saligrama, V.: Zero-shot recognition via structured prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 533–548. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_33

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61772508, 61801428, U1713213), National Key R&D Program of China (2017YFB1402100), Zhejiang Provincial Natural Science Foundation (LY18F020034), Natural Science Basic Research Plan in Shaanxi Province of China (2017JM6101, 2017JM6060, 2017JQ6077, 2017JM6103), Guangdong Technology Project (2016B010108010, 2016B010125003, 2017B010110007), CAS Key Technology Talent Program, Shenzhen Engineering Laboratory for 3D Content Generating Technologies ([2017]476), Shenzhen Technology Project (JCYJ 20170413152535587, JSGG20160331185256983, JSGG20160229115709109), Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, CAS (2014DP173025), Fundamental Research Funds for the Central Universities (GK201703060, GK201801004), Teaching Reform and Research Project of Shaanxi Normal University (17JG33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qieshi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Zhang, W., Zhang, Q., Cheng, J., Hao, P., Lu, G. (2018). Co-consistent Regularization with Discriminative Feature for Zero-Shot Learning. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics