Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Priori Error Estimates for Optimal Control Problems with Constraints on the Gradient of the State on Nonsmooth Polygonal Domains

  • Chapter
  • First Online:
Control and Optimization with PDE Constraints

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 164))

Abstract

In this article we are concerned with the finite element discretization of optimal control problems subject to a second order elliptic PDE and additional pointwise constraints on the gradient of the state.

We will derive error estimates for the convergence of the cost functional under mesh refinement. Subsequently error estimates for the control and state variable are obtained.

As an intermediate tool we will also analyze a Moreau-Yosida regularized version of the optimal control problem. In particular we will derive convergence rates for the cost functional and the primal variables. To this end we will employ new techniques in estimating the L -norm of the feasibility error which could also be used to improve existing estimates in the state constrained case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Blum, M. Dobrowolski, On finite element methods for elliptic equations on domains with corners. Computing 28, 53–63 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  3. E. Casas, J.F. Bonnans, Contrôle de systèmes elliptiques semilinéares comportant des contraintes sur l’état, in Nonlinear Partial Differential Equations and their Applications 8, ed. by H. Brezzis, J.L. Lions (Longman, New York, 1988), pp. 69–86

    Google Scholar 

  4. E. Casas, L.A. Fernández, Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state. Appl. Math. Optim. 27, 35–56 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Deckelnick, A. Günther, M. Hinze, Finite element approximation of elliptic control problems with constraints on the gradient. Numer. Math. 111, 335–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Douglas Jr., T. Dupont, L. Wahlbin, The stability in L q of the L 2-projection into finite element function spaces. Numer. Math. 23, 193–197 (1974/75)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Grisvard, Elliptic Problems in Nonsmooth Domains, 1st edn. Monographs and Studies in Mathematics (Pitman, Boston, 1985)

    MATH  Google Scholar 

  8. A. Günther, M. Hinze, Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls. Comput. Optim. Appl. 49(3), 549–566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Hintermüller, M. Hinze, Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. SIAM J. Numer. Anal. 47(3), 1666–1683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Hintermüller, M. Hinze, R.H.W. Hoppe, Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints. Preprint 2010-08, Hamburger Beiträge zur Angewandten Mathematik, 2010

    Google Scholar 

  11. M. Hintermüller, K. Kunisch, PDE-constrained optimization subject to pointwise constraints on the control, the state, and its derivative. SIAM J. Optim. 20(3), 1133–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Hintermüller, A. Schiela, W. Wollner, The length of the primal-dual path in Moreau-Yosida-based path-following for state constrained optimal control. Preprint 2012-03, Hamburger Beiträge zur Angewandten Mathematik, 2012

    Google Scholar 

  13. M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comp. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Ortner, W. Wollner, A priori error estimates for optimal control problems with pointwise constraints on the gradient of the state. Numer. Math. 118(3), 587–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.H. Schatz, A weak discrete maximum principle and stability of the finite element method in L on plane polygonal domains. I. Math. Comp. 33(148), 77–91 (1980)

    MathSciNet  MATH  Google Scholar 

  16. A.H. Schatz, L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part 1. Math. Comp. 32(141), 73–109 (1978)

    MathSciNet  MATH  Google Scholar 

  17. A. Schiela, W. Wollner, Barrier methods for optimal control problems with convex nonlinear gradient state constraints. SIAM J. Optim. 21(1), 269–286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems. MOS-SIAM Series on Optimization (SIAM, Philadelphia, 2011)

    Book  MATH  Google Scholar 

  19. W. Wollner, A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints. Comput. Optim. Appl. 47(1), 133–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Wollner, Optimal control of elliptic equations with pointwise constraints on the gradient of the state in nonsmooth polygonal domains. SIAM J. Control Optim. 50(4), 2117–2129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winnifried Wollner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Wollner, W. (2013). A Priori Error Estimates for Optimal Control Problems with Constraints on the Gradient of the State on Nonsmooth Polygonal Domains. In: Bredies, K., Clason, C., Kunisch, K., von Winckel, G. (eds) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol 164. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0631-2_11

Download citation

Publish with us

Policies and ethics