Nothing Special   »   [go: up one dir, main page]

Skip to main content

Image Sensor Model Using Geometric Algebra: From Calibration to Motion Estimation

  • Chapter
  • First Online:
Geometric Algebra Computing

Abstract

In computer vision image sensors have universally been defined as the nonparametric association of projection rays in the 3D world to pixels in the images. If the pixels’ physical topology can be often neglected in the case of perspective cameras, this approximation is no longer valid in the case of variant scale sensors, which are now widely used in robotics. Neglecting the nonnull pixel area and then the pixel volumic field of view implies that geometric reconstruction problems are solved by minimizing a cost function that combines the reprojection errors in the 2D images. This paper provides a complete and realistic cone-pixel camera model that equally fits constant or variant scale resolution together with a protocol to calibrate such a sensor. The proposed model involves a new characterization of pixel correspondences with 3D-cone intersections computed using convex hull and twists in Conformal Geometric Algebra. Simulated experiments show that standard methods and especially Bundle Adjustment are sometimes unable to reach the correct motion, because of their ray-pixel approach and the choice of reprojection error as a cost function which does not particularly fit the physical reality. This problem can be solved using a nonprojective cone intersection cost function as introduced below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benosman, R., Kang, S.: Panoramic Vision: Sensors, Theory, Applications. Springer, Berlin (2001)

    Google Scholar 

  3. Debaecker, T., Benosman, R.: Bio-inspired model of visual information codification for localization: from retina to the lateral geniculate nucleus. J. Integr. Neurosci. 6(3), 1–33 (2007)

    Google Scholar 

  4. Grossberg, M.D., Nayar, S.K.: A general imaging model and a method for finding its parameters. In: ICCV, pp. 108–115 (2001)

    Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math.: Int. Surv. J. Appl. Math. Math. Appl. 23, 65–93 (1991)

    MATH  MathSciNet  Google Scholar 

  7. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  8. Kahl, F., Hartley, R.: Multiple view geometry under the l-infinity norm. In: PAMI (2008)

    Google Scholar 

  9. Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. In: ICCV (2005)

    Google Scholar 

  10. Kim, J.-H., Hartley, R.I., Frahm, J.-M., Pollefeys, M.: Visual odometry for non-overlapping views using second-order cone programming. In: ACCV (2), pp. 353–362 (2007)

    Google Scholar 

  11. Kim, J.-H., Li, H., Hartley, R.: Motion estimation for multi-camera systems using global optimization (2008)

    Google Scholar 

  12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  13. Perwass, C.: Applications of geometric algebra in computer vision. Ph.D. thesis, University of Cambridge (2000)

    Google Scholar 

  14. Perwass, C., Gebken, C., Sommer, G.: Geometry and kinematics with uncertain data. In: ECCV (1), pp. 225–237 (2006)

    Google Scholar 

  15. Rosenhahn, B.: Pose estimation revisited. Ph.D. thesis, Christian-Albrechts-Universitat zu Kiel, Institut für Informatik und Praktische Mathematik (2003)

    Google Scholar 

  16. Rosenhahn, B., Perwass, C., Sommer, G.: Free-form pose estimation by using twist representations. Algorithmica 38(1), 91–113 (2003)

    Article  MathSciNet  Google Scholar 

  17. Sommer, G., Rosenhahn, B., Perwass, C.: Twists—an operational representation of shape. In: IWMM GIAE, pp. 278–297 (2004)

    Google Scholar 

  18. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment—a modern synthesis, pp. 298–375 (2000)

    Google Scholar 

  19. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations, vol. 1, pp. 666–673 (1999)

    Google Scholar 

  20. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Debaecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Debaecker, T., Benosman, R., Ieng, S.H. (2010). Image Sensor Model Using Geometric Algebra: From Calibration to Motion Estimation. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics