Abstract
Abstract Recent work has outlined a framework for analyzing diffusion tensor gradient and covariance tensors in terms of invariant gradient and rotation tangents, which span local variations in tensor shape and orientation, respectively. This chapter hopes to increase the adoption of this framework by giving it a more intuitive conceptual description, as well as providing practical advice for its numeric implementation. Example applications are described, with an emphasis on decomposing the third-order gradient of a diffusion tensor field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akram Aldroubi and Peter Basser. Reconstruction of vector and tensor fields from sampled discrete data. Contemporary Mathematics, 247:1–15, 1999.
Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2):411–421, August 2006.
P J Basser, J Mattiello, and D LeBihan. Estimation of the effective self-diffusion tensor from the NMR spin-echo. Journal of Magnetic Resonance, Series B, 103(3):247–254, 1994.
P J Basser and S Pajevic. A normal distribution for tensor-valued random variables: Applications to diffusion tensor MRI. IEEE Trans. on Medical Imaging, 22(7):785–794, July 2003.
Peter J. Basser. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. Nuclear Magnetic Resonance in Biomedicine, 8:333–344, 1995.
Peter J. Basser and Sinisa Pajevic. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing, 87:220–236, 2007.
Peter J. Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractograpy using DT-MRI data. Magnetic Resonance in Medicine, 44:625–632, 2000.
P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly. A rigorous framework for diffusion tensor calculus. Magnetic Resonance in Medicine, 53(1):221–225, January 2005.
C Beaulieu. The basis of anisotropic water diffusion in the nervous system-A technical review. Nuclear Magnetic Resonance in Biomedicine, 15:435–455, 2002.
D E Bourne and P C Kendall. Vector Analysis and Cartesian Tensors. CRC Press, 3rd edition, 1992.
Thomas E. Conturo, Nicolas F. Lori, Thomas S. Cull, Erbil Akbudak, Abraham Z. Snyder, Joshua S. Shimony, Robert C. McKinstry, Harold Burton, and Marcus E. Raichle. Tracking neuronal fiber pathways in the living human brain. Proc. National Academy of Sciences, 96:10422–10427, August 1999.
J Crank. The Mathematics of Diffusion. Oxford University Press, Oxford, England, 1975.
J C Criscione, J D Humphrey, A S Douglas, and W C Hunter. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. Journal of Mechanics and Physics of Solids, 48:2445–2465, 2000.
Julien Dauguet, Sharon Peled, Vladimir Berezovskii, Thierry Delzescaux, Simon K. Warfield, Richard Born, and Carl-Fredrik Westin. 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography. In Proceedings MICCAI 2006, Lecture Notes in Computer Science 4190, pages 109–116, Copenhagen, Denmark, October 2006.
D B Ennis and G Kindlmann. Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magnetic Resonance in Medicine, 55(1):136–146, 2006.
Daniel B. Ennis, Gordon Kindlman, Ignacio Rodriguez, Patrick A. Helm, and Elliot R. McVeigh. Visualization of tensor fields using superquadric glyphs. Magnetic Resonance in Medicine, 53:169–176, January 2005.
P Fillard, V Arsigny, X Pennec, and N Ayache. Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics. In Proceedings ISBI 2006, LNCS, pages 786–789, Arlington, Virginia, USA, April 2006.
P. Thomas Fletcher and Sarang Joshi. Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In Proceedings ECCV 2004 Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), volume 31107 of LNCS, pages 87–98. Springer-Verlag, 2004.
G A Holzapfel. Nonlinear Solid Mechanics. John Wiley and Sons, Ltd, England, 2000.
Derek K. Jones, David Lythgoe, Mark A Horsfield, Andrew Simmons, Steve C. R. Williams, and Hugh S. Markus. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke, 30:393–397, 1999.
G Kindlmann, RSJ Estépar, M Niethammer, S Haker, and C-F Westin. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. In Proceedings MICCAI 2007, Lecture Notes in Computer Science 4792, pages 1–9, Brisbane, Australia, October–November 2007.
Gordon Kindlmann, Daniel B. Ennis, Ross T. Whitaker, and Carl-Fredrik Westin. Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. on Medical Imaging, 26(11):1483–1499, November 2007.
Gordon L Kindlmann. Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, University of Utah, September 2004. http://www.cs.utah.edu/simgk/PhD.
T Klingberg, M Hedehus, E Temple, T Salz, J D E Gabrielli, M E Moseley, and R A Poldrack. Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron, 25:493–500, 2000.
M Kubicki, C-F Westin, S E Maier, H Mamata, M Frumin, H Ernst-Hirshefeld, R Kikinis, F A Jolesz, R W McCarley, and M E Shenton. Cingulate fasciculus integrity disruption in schizophrenia: A magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54:1171–1180, 2003.
C Lenglet, M Rousson, and R Deriche. DTI segmentation by statistical surface evolution. IEEE Trans. on Medical Imaging, 25:685–700, June 2006.
Stanley Lu, Daniel Ahn, Glyn Johnson, Meng Law, David Zagzag, and Robert I. Grossman. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: Introduction of the tumor infiltration index. Neuroradiology, 232(1):221–228, July 2004.
M E Moseley, Y Cohen, J Mintorovitch, L Chileuitt, H Shimizu, J Kucharczyk, M F Wendland, and P R Weinstein. Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T2-weighted MRI and spectroscopy. Magnetic Resonance in Medicine, 14(2):330–346, May 1990.
S Pajevic, A Aldroubi, and P J Basser. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance, 154:85–100, 2002.
Xavier Pennec. Probabilities and statistics on Riemannian manifolds: A geometric approach. Technical Report 5093, INRIA, Sophia Antipolis, January 2004.
Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropy diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.
C Pierpaoli, P Jezzard, P J Basser, A Barnett, and G DiChiro. Diffusion tensor MR imaging of the human brain. Radiology, 201(3):637–648, Dec 1996.
S M Smith, M Jenkinson, H Johansen-Berg, D Rueckert, T E Nichols, C E Mackay, K E Watkins, O Ciccarelli, M Z Cader, P M Matthews, and T E J Behrens. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31:1487–1505, 2006.
C H Sotak. The role of diffusion tensor imaging in the evaluation of ischemic brain injury-A review. Nuclear Magnetic Resonance in Biomedicine, 15:561–569, 2002.
D S Tuch, D H Salat, J J Wisco, A K Zaleta, N D Hevelone, and H D Rosas. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc. National Academy of Sciences, 102(34):12212–12217, 2005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag London Limited
About this chapter
Cite this chapter
Kindlmann, G.L., Westin, CF. (2009). Practical and Intuitive Basis for Tensor Field Processing with Invariant Gradients and Rotation Tangents. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_14
Download citation
DOI: https://doi.org/10.1007/978-1-84882-299-3_14
Publisher Name: Springer, London
Print ISBN: 978-1-84882-298-6
Online ISBN: 978-1-84882-299-3
eBook Packages: Computer ScienceComputer Science (R0)