Nothing Special   »   [go: up one dir, main page]

Skip to main content

Practical and Intuitive Basis for Tensor Field Processing with Invariant Gradients and Rotation Tangents

  • Chapter
Tensors in Image Processing and Computer Vision

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Abstract Recent work has outlined a framework for analyzing diffusion tensor gradient and covariance tensors in terms of invariant gradient and rotation tangents, which span local variations in tensor shape and orientation, respectively. This chapter hopes to increase the adoption of this framework by giving it a more intuitive conceptual description, as well as providing practical advice for its numeric implementation. Example applications are described, with an emphasis on decomposing the third-order gradient of a diffusion tensor field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akram Aldroubi and Peter Basser. Reconstruction of vector and tensor fields from sampled discrete data. Contemporary Mathematics, 247:1–15, 1999.

    Google Scholar 

  2. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2):411–421, August 2006.

    Article  Google Scholar 

  3. P J Basser, J Mattiello, and D LeBihan. Estimation of the effective self-diffusion tensor from the NMR spin-echo. Journal of Magnetic Resonance, Series B, 103(3):247–254, 1994.

    Article  Google Scholar 

  4. P J Basser and S Pajevic. A normal distribution for tensor-valued random variables: Applications to diffusion tensor MRI. IEEE Trans. on Medical Imaging, 22(7):785–794, July 2003.

    Article  Google Scholar 

  5. Peter J. Basser. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. Nuclear Magnetic Resonance in Biomedicine, 8:333–344, 1995.

    Google Scholar 

  6. Peter J. Basser and Sinisa Pajevic. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing, 87:220–236, 2007.

    Article  Google Scholar 

  7. Peter J. Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractograpy using DT-MRI data. Magnetic Resonance in Medicine, 44:625–632, 2000.

    Article  Google Scholar 

  8. P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly. A rigorous framework for diffusion tensor calculus. Magnetic Resonance in Medicine, 53(1):221–225, January 2005.

    Article  Google Scholar 

  9. C Beaulieu. The basis of anisotropic water diffusion in the nervous system-A technical review. Nuclear Magnetic Resonance in Biomedicine, 15:435–455, 2002.

    Google Scholar 

  10. D E Bourne and P C Kendall. Vector Analysis and Cartesian Tensors. CRC Press, 3rd edition, 1992.

    Google Scholar 

  11. Thomas E. Conturo, Nicolas F. Lori, Thomas S. Cull, Erbil Akbudak, Abraham Z. Snyder, Joshua S. Shimony, Robert C. McKinstry, Harold Burton, and Marcus E. Raichle. Tracking neuronal fiber pathways in the living human brain. Proc. National Academy of Sciences, 96:10422–10427, August 1999.

    Article  Google Scholar 

  12. J Crank. The Mathematics of Diffusion. Oxford University Press, Oxford, England, 1975.

    Google Scholar 

  13. J C Criscione, J D Humphrey, A S Douglas, and W C Hunter. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. Journal of Mechanics and Physics of Solids, 48:2445–2465, 2000.

    Article  Google Scholar 

  14. Julien Dauguet, Sharon Peled, Vladimir Berezovskii, Thierry Delzescaux, Simon K. Warfield, Richard Born, and Carl-Fredrik Westin. 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography. In Proceedings MICCAI 2006, Lecture Notes in Computer Science 4190, pages 109–116, Copenhagen, Denmark, October 2006.

    Google Scholar 

  15. D B Ennis and G Kindlmann. Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magnetic Resonance in Medicine, 55(1):136–146, 2006.

    Article  Google Scholar 

  16. Daniel B. Ennis, Gordon Kindlman, Ignacio Rodriguez, Patrick A. Helm, and Elliot R. McVeigh. Visualization of tensor fields using superquadric glyphs. Magnetic Resonance in Medicine, 53:169–176, January 2005.

    Article  Google Scholar 

  17. P Fillard, V Arsigny, X Pennec, and N Ayache. Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics. In Proceedings ISBI 2006, LNCS, pages 786–789, Arlington, Virginia, USA, April 2006.

    Google Scholar 

  18. P. Thomas Fletcher and Sarang Joshi. Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In Proceedings ECCV 2004 Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), volume 31107 of LNCS, pages 87–98. Springer-Verlag, 2004.

    Google Scholar 

  19. G A Holzapfel. Nonlinear Solid Mechanics. John Wiley and Sons, Ltd, England, 2000.

    Google Scholar 

  20. Derek K. Jones, David Lythgoe, Mark A Horsfield, Andrew Simmons, Steve C. R. Williams, and Hugh S. Markus. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke, 30:393–397, 1999.

    Google Scholar 

  21. G Kindlmann, RSJ Estépar, M Niethammer, S Haker, and C-F Westin. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. In Proceedings MICCAI 2007, Lecture Notes in Computer Science 4792, pages 1–9, Brisbane, Australia, October–November 2007.

    Google Scholar 

  22. Gordon Kindlmann, Daniel B. Ennis, Ross T. Whitaker, and Carl-Fredrik Westin. Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. on Medical Imaging, 26(11):1483–1499, November 2007.

    Article  Google Scholar 

  23. Gordon L Kindlmann. Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, University of Utah, September 2004. http://www.cs.utah.edu/simgk/PhD.

  24. T Klingberg, M Hedehus, E Temple, T Salz, J D E Gabrielli, M E Moseley, and R A Poldrack. Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron, 25:493–500, 2000.

    Article  Google Scholar 

  25. M Kubicki, C-F Westin, S E Maier, H Mamata, M Frumin, H Ernst-Hirshefeld, R Kikinis, F A Jolesz, R W McCarley, and M E Shenton. Cingulate fasciculus integrity disruption in schizophrenia: A magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54:1171–1180, 2003.

    Article  Google Scholar 

  26. C Lenglet, M Rousson, and R Deriche. DTI segmentation by statistical surface evolution. IEEE Trans. on Medical Imaging, 25:685–700, June 2006.

    Article  Google Scholar 

  27. Stanley Lu, Daniel Ahn, Glyn Johnson, Meng Law, David Zagzag, and Robert I. Grossman. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: Introduction of the tumor infiltration index. Neuroradiology, 232(1):221–228, July 2004.

    Google Scholar 

  28. M E Moseley, Y Cohen, J Mintorovitch, L Chileuitt, H Shimizu, J Kucharczyk, M F Wendland, and P R Weinstein. Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T2-weighted MRI and spectroscopy. Magnetic Resonance in Medicine, 14(2):330–346, May 1990.

    Article  Google Scholar 

  29. S Pajevic, A Aldroubi, and P J Basser. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance, 154:85–100, 2002.

    Article  Google Scholar 

  30. Xavier Pennec. Probabilities and statistics on Riemannian manifolds: A geometric approach. Technical Report 5093, INRIA, Sophia Antipolis, January 2004.

    Google Scholar 

  31. Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropy diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.

    Article  Google Scholar 

  32. C Pierpaoli, P Jezzard, P J Basser, A Barnett, and G DiChiro. Diffusion tensor MR imaging of the human brain. Radiology, 201(3):637–648, Dec 1996.

    Google Scholar 

  33. S M Smith, M Jenkinson, H Johansen-Berg, D Rueckert, T E Nichols, C E Mackay, K E Watkins, O Ciccarelli, M Z Cader, P M Matthews, and T E J Behrens. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31:1487–1505, 2006.

    Article  Google Scholar 

  34. C H Sotak. The role of diffusion tensor imaging in the evaluation of ischemic brain injury-A review. Nuclear Magnetic Resonance in Biomedicine, 15:561–569, 2002.

    Google Scholar 

  35. D S Tuch, D H Salat, J J Wisco, A K Zaleta, N D Hevelone, and H D Rosas. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc. National Academy of Sciences, 102(34):12212–12217, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Kindlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kindlmann, G.L., Westin, CF. (2009). Practical and Intuitive Basis for Tensor Field Processing with Invariant Gradients and Rotation Tangents. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-299-3_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-298-6

  • Online ISBN: 978-1-84882-299-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics