Nothing Special   »   [go: up one dir, main page]

Skip to main content

Review of Current Crime Prediction Techniques

  • Conference paper
Applications and Innovations in Intelligent Systems XIV (SGAI 2006)

Abstract

Police analysts are requiredto unravel the complexities in data to assist operational personnel in arresting offenders and directing crime prevention strategies. However, the volume of crime that is being committed and the awareness of modern criminals make this a daunting task. The ability to analyse this amount of data with its inherent complexities without. using computational support puts a strain on human resources. This paper examines the current techniques that are used to predict crime and criminality. Over time, these techniques have been refined and have achieved limited success. They are concentrated into three categories: statistical methods, these mainly relate to the journey to crime, age of offending and offending behaviour; techniques using geographical information systems that identify crime hot spots, repeat victimisation, crime attractors and crime generators; a miscellaneous group which includes machine learning techniques to identify patterns in criminal behaviour and studies involving reoffending. The majority of current techniques involve the prediction of either a single offender’s criminality or a single crimetype’s next offence. These results are of only limited use in practical policing. It is our contention that Knowledge Discovery in Databases should be used on all crime types together with offender data, as a whole, to predict crime and criminality within a small geographical area of a police force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adderley, R. (2004) The Use of Data Mining Techniques in Operational Crime Fighting, Intelligence and Security Informatics, Second Symposium on Intelligence and Security Informatics. Springer, ISBN: 3-540-22125-5

    Google Scholar 

  • Adderley, R., and Musgrove, P.B., (1999) Data Mining at the West Midlands Police: A Study of Bogus Official Burglaries, BCS Specialist Group on Expert Systems, ES99, London, Springer-Verlag, pp191–203, 1999.

    Google Scholar 

  • Adderley, R., and Musgrove, P.B., (2003) Modus operandi modeling of group offending: a data mining case study, Accepted by: The International Journal of Police Science and Management, 2003.

    Google Scholar 

  • Brantingham, P., & Brantingham, P., (1984) Patterns in crime. New York: Macmillan.

    Google Scholar 

  • Brantingham, P., & Brantingham, P., (1991), Notes on the geometry of crime, in Environmental Criminology, USA: Wavelend Press Inc.

    Google Scholar 

  • Brantingham, P, & Brantingham, P., (1995) Criminality of place: Crime generators and crime attractors. European Journal on Criminal Policy and Research 3,3, special issueon Crime Environments and Situational Prevention, 5–21.

    Google Scholar 

  • Brown, D.E. (1998) The Regional Crime Analysis Program (RECAP): A Framework for Mining Data to Catch Criminals. in IEEE International Conference: Systems Manand Cybernetics Society.

    Google Scholar 

  • Canter, D.V. (1994) Criminal Shadows London: Harper Collins.

    Google Scholar 

  • Charles, J., (1998) AI and Law Enforcement, IEEE Intelligent Systems, pp77–80.

    Google Scholar 

  • Chau, M., Xu, J., and Chen, H (2002) Extracting Meaningful Entities from Police Narrative Reports. In: Proceedings of the National Conference for Digital Government Research (dg.o 2002), Los Angeles, California, USA.

    Google Scholar 

  • Chen. H., Chung, W., Xu. J. J, Qin. G. W. Y, and Chau. M (2004), Crime Data Mining: A General Framework and Some Examples. IEEE Computer Society. 50–56.

    Google Scholar 

  • Clarke, R.V., & Felson M. (1993), Introduction: Criminology, Routine activity, and rational choice in Routine activity and rational choice: Advances in criminological theory, volume 5. Clarke, R.V., Felson, M. (eds.) New Jersey, USA: Transaction Publishers.

    Google Scholar 

  • Cohen, L.E. and Felson, M., (1979), Social Change and Crime Rate Trends: A Routine Activity Approach. American Sociological Review, Vol 44, 588–608.

    Article  Google Scholar 

  • Davies, A. (1992) Rapists Behaviour: A three aspectmodel as a basis for analysis and the identification of serial crime. Forensic Science International, 55, 173–194.

    Article  Google Scholar 

  • Ewart, B. W., and Oatley, G.C. (2003) Applying the concept of revictimization: Using burglars’ behaviour to predict houses at risk of future victimization. International Journal of Police Strategies and Management, Vol. 5 (2).

    Google Scholar 

  • Grubin, D., Kelly, P., and Brunsdon, C. (2001) Linking serious sexual assaults through behaviour. Home Office Research Study 215. ISBN 1-84082-560-X

    Google Scholar 

  • Hauk, R.V., Atabaksh, H., Ongvasith, P., Gupta, H., and Chen, H. (2002) Using Coplinkto analyze criminal justice data, IEEE Computer, 35(3),pp. 30–37.

    Google Scholar 

  • Johnson, S.H. and Bowers, K.J. (2004) The Burglary as Clue to the Future: The Beginnings of Prospective Hot-Spotting, European Journal of Criminology, Vol 1 (2): 237–255: 1477–3708.

    Article  Google Scholar 

  • Lucas, R. (1986) An Expert System to Detect Burglars using a Logic Language and a Relational Database, 5th British National Conference on Databases, Canterbury.

    Google Scholar 

  • Oatley, G.C., Zeleznikow, J., and Ewart, B.W., (2004), Matching and Predicting Crimes. In: Macintosh, A., Ellis, R. and Allen, T. (eds.), Applications and Innovations in Intelligent Systems XII. Proceedings of AI2004, The Twenty-fourth SGAI International Conference on Knowledge Based Systems and Applications of Artificial Intelligence, Springer: 19–32. ISBN 1-85233-908-X

    Google Scholar 

  • Rhodes, W.M., Conly, C., (1991), The criminal commute: A theoretical perspective in Environmental Criminology, USA: Wavelend PressInc.

    Google Scholar 

  • Rossmo, D. K (2000) Geographic profiling: CRC Press. ISBN 0-8493-8129-0. pp 97–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this paper

Cite this paper

Grover, V., Adderley, R., Bramer, M. (2007). Review of Current Crime Prediction Techniques. In: Ellis, R., Allen, T., Tuson, A. (eds) Applications and Innovations in Intelligent Systems XIV. SGAI 2006. Springer, London. https://doi.org/10.1007/978-1-84628-666-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-666-7_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-665-0

  • Online ISBN: 978-1-84628-666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics