Nothing Special   »   [go: up one dir, main page]

Skip to main content

Acting Irrationally to Improve Performance in Stochastic Worlds

  • Conference paper
Research and Development in Intelligent Systems XXII (SGAI 2005)

Abstract

Despite many theories and algorithms for decision-making, after estimating the utility function the choice is usually made by maximising its expected value (the max EU principle). This traditional and ‘rational’ conclusion of the decision-making process is compared in this paper with several ‘irrational’ techniques that make choice in Monte-Carlo fashion. The comparison is made by evaluating the performance of simple decision-theoretic agents in stochastic environments. It is shown that not only the random choice strategies can achieve performance comparable to the max EU method, but under certain conditions the Monte-Carlo choice methods perform almost two times better than the max EU. The paper concludes by quoting evidence from recent cognitive modelling works as well as the famous decision-making paradoxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’École americaine. Econometrica, 21, 503–546.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Anscombe, F. J., & Aumann, R. J. (1963). A definition of subjective probability. Annals of Mathematical Statistics, 34, 199–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Belavkin, R. V., & Ritter, F. E. (2003. April). The use of entropy for analysis and control of cognitive models. In F. Detje, D. Dörner, & H. Schaub (Eds.), Proceedings of the Fifth International Conference on Cognitive Modelling (pp. 21–26). Bamberg, Germany: Universitäts-Verlag Bamberg.

    Google Scholar 

  • Belavkin, R. V., & Ritter, F. E. (2004). Optimist: A new conflict resolution algorithm for ACT-R. In Proceedings of the Sixth International Conference on Cognitive Modelling (pp. 40–45). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, J. M. P. (1983, May). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  Google Scholar 

  • Myers, J. L., Fort, J. G., Katz, L., & Suydam, M. M. (1963). Differential monetary gains and losses and event probability in a two-choice situation. Journal of Experimental Psychology, 77, 453–359.

    Article  Google Scholar 

  • Neumann, J. von, & Morgenstern, O. (1944). Theory of games and economic behavior (first ed.). Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Savage, L. (1954). The foundations of statistics. NY: John Wiley & Sons.

    MATH  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135–170.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this paper

Cite this paper

Belavkin, R.V. (2006). Acting Irrationally to Improve Performance in Stochastic Worlds. In: Bramer, M., Coenen, F., Allen, T. (eds) Research and Development in Intelligent Systems XXII. SGAI 2005. Springer, London. https://doi.org/10.1007/978-1-84628-226-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-226-3_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-225-6

  • Online ISBN: 978-1-84628-226-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics