Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multilinear Monomial Detection

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 98 Accesses

Years and Authors of Summarized Original Work

  • 2008; Koutis

  • 2009; Williams

Problem Definition

The topic of this article is the parameterized multilinear monomial detection problem:

k-MlD::

Given an arithmetic circuit C representing a polynomial P(X) over \(\mathbb{Z}_{+}\), decide whether P(X) construed as a sum of monomials contains a multilinear monomial of degree k.

An arithmetic circuit is a directed acyclic graph with nodes corresponding to addition and multiplication gates, sources labeled with variables from a set X or positive integers, and one special terminal corresponding to the output gate. A monomial of degree k is a product of exactly k variables from X, and it is called multilinear if these k variables are distinct.

The k-MlD problem is arguably a fundamental problem, encompassing as special cases many natural and well-studied parameterized problems. Along with the algorithm for its solution, k-MlD provides a general framework for designing parameterized algorithms [11, 15...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Alon N, Gutner S (2009) Balanced hashing, color coding and approximate counting. In: Chen J, Fomin FV (eds) Parameterized and exact computation. Springer, Berlin/Heidelberg, pp 1–16

    Chapter  Google Scholar 

  2. Alon N, Yuster R, Zwick U (1995) Color coding. J ACM 42(4):844–856

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund A (2010) Determinant sums for undirected hamiltonicity. In: 51th annual IEEE symposium on foundations of computer science, FOCS 2010, Las Vegas, 23–26 Oct 2010, pp 173–182

    Google Scholar 

  4. Björklund A (2010) Exact covers via determinants. In: 27th international symposium on theoretical aspects of computer science, STACS, Nancy, pp 95–106

    Google Scholar 

  5. Björklund A, Kaski P, Kowalik L (2015) Constrained multilinear detection and generalized graph motifs. Algorithmica 1–21. doi:10.1007/s00453-015-9981-1

    Google Scholar 

  6. Blin G, Bonizzoni P, Dondi R, Sikora F (2012) On the parameterized complexity of the repetition free longest common subsequence problem. Inf Process Lett 112(7):272–276

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan M, Nederlof J, Pilipczuk M, Pilipczuk M, van Rooij JMM, Wojtaszczyk JO (2011) Solving connectivity problems parameterized by treewidth in single exponential time. In: IEEE 52nd annual symposium on foundations of computer science, FOCS, Palm Springs, pp 150–159

    Google Scholar 

  8. Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Texts in computer science. Springer. doi:10.1007/978-1-4471-5559-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin FV, Lokshtanov D, Raman V, Saurabh S, Rao BVR (2012) Faster algorithms for finding and counting subgraphs. J Comput Syst Sci 78(3):698–706. doi:10.1016/j.jcss.2011.10.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomin FV, Lokshtanov D, Saurabh S (2014) Efficient computation of representative sets with applications in parameterized and exact algorithms. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM, Philadelphia, pp 142–151

    Chapter  Google Scholar 

  11. Koutis I (2008) Faster algebraic algorithms for path and packing problems. In: Proceedings of the 35th international colloquium on automata, languages and programming, Part I. Springer, Berlin/Heidelberg, pp 575–586

    Chapter  Google Scholar 

  12. Koutis I (2012) Constrained multilinear detection for faster functional motif discovery. Inf Process Lett 112(22):889–892

    Article  MathSciNet  MATH  Google Scholar 

  13. Koutis I, Williams R (2009) Limits and applications of group algebras for parameterized problems. In: Proceedings of the 36th international colloquium on automata, languages and programming: Part I (ICALP ’09). Springer, Berlin/Heidelberg, pp 653–664

    Chapter  Google Scholar 

  14. Motwani R, Raghavan P (1997) Randomized algorithms. In: Tucker AB (ed) The computer science and engineering handbook. CRC Press, Boca Raton, pp 141–161

    Google Scholar 

  15. Williams R (2009) Finding paths of length k in \(O^{{\ast}}(2^{k})\) time. Inf Process Lett 109:315–318

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Koutis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Koutis, I. (2016). Multilinear Monomial Detection. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_784

Download citation

Publish with us

Policies and ethics