Abstract
Cloud computing has emerged as a dominant paradigm that has been widely adopted by enterprises. Clouds provide on-demand access to computing utilities, an abstraction of unlimited computing resources, and support for on-demand scale up, scale down and scale out. Clouds are also rapidly joining high performance computing system, clusters and grids as viable platforms for scientific exploration and discovery. Furthermore, dynamically federated Cloud-of-Clouds infrastructure can support heterogeneous and highly dynamic applications requirements by composing appropriate (public and/or private) cloud services and capabilities. As a result, providing scalable and robust mechanisms to federate distributed infrastructures and handle application workflows, that can effectively utilize them, is critical. In this chapter, we present a federation model to support the dynamic federation of resources and autonomic management mechanisms that coordinate multiple workflows to use resources based on objectives. We demonstrate the effectiveness of the proposed framework and autonomic mechanisms through the discussion of an experimental evaluation of illustrative use case application scenarios, and from these experiences, we discuss that such a federation model can support new types of application formulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A. Agarwal, M. Ahmed, A. Berman, B. L. Caron, et al. GridX1: A Canadian computational grid. Future Gener. Comput. Syst., 23:680–687, June 2007.
A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement), GFD-R-P.107. Technical report, GRAAP WG, Open Grid Forum, March 2007.
M. D. Assuncao and R. Buyya. Performance analysis of allocation policies for interGrid resource provisioning. Information and Software Technology, 51:42–55, January 2009.
L. F. Bittencourt, C. R. Senna, and E. R. M. Madeira. Enabling execution of service workflows in grid/cloud hybrid systems. In Network Operations and Management Symp. Workshop, pages 343–349, 2010.
N. Bobroff, L. Fong, S. Kalayci, Y. Liu, J. C. Martinez, I. Rodero, S. M. Sadjadi, and D. Villegas. Enabling interoperability among meta-schedulers. In IEEE CCGrid, pages 306–315, 2008.
R. Bolze, F. Cappello, E. Caron, M. Dayde, et al. Grid’5000: a large scale and highly reconfigurable experimental Grid testbed. International Journal of High Performance Computing Applications, 20:481–494, November 2006.
N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.
A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud architectures to enable cross-federation. In IEEE CLOUD, pages 337–34, 2010.
M. D. de Assuncao, R. Buyya, and S. Venugopal. Intergrid: a case for internetworking islands of grids. Concurrency Computat. Pract. and Exper., 20(8):997–1024, 2008.
M. D. de Assuncao, A. di Costanzo, and R. Buyya. Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In ACM HPDC, pages 141–150, 2009.
E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ‘08, pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE Press.
T. Dunning and R. Nandkumar. International cyberinfrastructure: activities around the globe. Cyberinfrastructure Technology Watch Quarterly, 2:2–4, February 2006.
E. Elmroth and J. Tordsson. A standards-based grid resource brokering service supporting advance reservations, coallocation, and cross-grid interoperability. Concurr. Comput.: Pract. Exper., 21(18):2298–2335, Dec. 2009.
D. Erwin and D. Snelling. UNICORE: A Grid Computing Environment. In International Euro-Par Conference on Parallel Processing, pages 825–834, Manchester, UK, August 2001.
L. Field, E. Laure, and M. W. Schulz. Grid deployment experiences: Grid interoperation. J. Grid Comput., 7(3):287–296, 2009.
I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kauffman, 1999.
I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Perfomance Computing Applications, 15(3):200–222, 2001.
G. Fox and D. Gannon. Cloud Programming Paradigms for Technical Computing Applications. Technical report, Indiana University, 2012.
T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A Simple API for Grid Applications (SAGA), GWD-R.72. Technical report, SAGA-CORE Working Group, Open Grid Forum, September 2006.
I. Gorton, Y. Liu, and J. Yin. Exploring architecture options for a federated, cloud-based system biology knowledgebase. In IEEE Intl. Conf. on Cloud Computing Technology and Science, pages 218–225, 2010.
T. Hey and A. Trefethen. The UK e-Science Core Programme and the Grid. Future Gener. Comput. Syst., 18:1017–1031, 2002.
E. Huedo, R. Montero, and I. Llorente. A recursive architecture for hierarchical grid resource management. Future Gener. Comput. Syst., 25:401–405, April 2009.
K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn., 65:1604–1608, 1996.
A. Iosup, D. Epema, T. Tannenbaum, M. Farrelle, and M. Livny. Inter-Operable Grids through Delegated MatchMaking. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC07), pages 13:1–13:12, Reno, Nevada, November 2007.
A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst., 22(6):931–945, 2011.
A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1998.
K. Keahey and T. Freeman. Science clouds: Early experiences in cloud computing for scientific applications. In Cloud Computing and Its Applications (CCA-08), October 2008.
A. Kertesz and P. Kacsuk. Grid Meta-Broker Architecture: Towards an Interoperable Grid Resource Brokering Service. In CoreGRID Workshop on Grid Middleware in conjunction with Euro-Par, LNCS 4375, pages 112–116, Desden, Germany, 2008.
A. Kertész and P. Kacsuk. Gmbs: A new middleware service for making grids interoperable. Future Gener. Comput. Syst., 26(4):542–553, Apr. 2010.
A. Kertesz, I. Rodero, and F. Guim. Bpdl: A data model for grid resource broker capabilities. Technical Report TR-0074, Institute on Resource Management and Scheduling, CoreGRID - Network of Excellence, March 2007.
A. Kertesz, I. Rodero, and F. Guim. Meta-Brokering Solutions for Expanding Grid Middleware Limitations. In Workshop on Secure, Trusted, Manageable and Controllable Grid Services (SGS) in conjunction with International Euro-Par Conference on Parallel Processing, Gran Canaria, Spain, July 2008.
A. Kertžsz, I. Rodero, F. Guim, A. Kertžsz, I. Rodero, and F. Guim. A data model for grid resource broker capabilities. In Grid Middleware and Services, pages 39–52, 2008.
H. Kim, Y. E. Khamra, I. Rodero, S. Jha, and M. Parashar. Autonomic management of application workflows on hybrid computing infrastructure. Sci. Program., 19(2–3):75–89, 2011.
H. Kim, M. Parashar, D. J. Foran, and L. Yang. Investigating the use of autonomic cloudbursts for high-throughput medical image registration. In IEEE/ACM GRID, pages 34–41, 2009.
K. Leal, E. Huedo, and I. M. Llorente. A decentralized model for scheduling independent tasks in federated grids. Future Gener. Comput. Syst., 25(8):840–852, 2009.
Z. Li and M. Parashar. A computational infrastructure for grid-based asynchronous parallel applications. In HPDC, pages 229–230, 2007.
Z. Li and M. Parashar. Grid-based asynchronous replica exchange. In IEEE/ACM GRID, pages 201–208, 2007.
M. Marzolla, P. Andreetto, V. Venturi, A. Ferraro, et al. Open Standards-Based Interoperability of Job Submission and Management Interfaces across the Grid Middleware Platforms gLite and UNICORE. In IEEE International Conference on e-Science and Grid Computing, pages 592–601, Bangalore, India, December 2007.
H. Mohamed and D. Epema. KOALA: a Co-allocating Grid Scheduler. Concurrency and Computation: Practice & Experience, 20:1851–1876, November 2008.
D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. The eucalyptus open-source cloud-computing system. In IEEE/ACM CCGRID, pages 124–131, 2009.
A. Oleksiak, A. Tullo, P. Graham, T. Kuczynski, J. Nabrzyski, D. Szejnfeld, and T. Sloan. HPC-Europa: Towards Uniform Access to European HPC Infrastructures. In IEEE/ACM International Workshop on Grid Computing, pages 308–311, November 2005.
S. Ostermann, R. Prodan, and T. Fahringer. Extending grids with cloud resource management for scientific computing. In IEEE/ACM Grid, pages 42–49, 2009.
M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda. Cloud Paradigm and Practices for CDS&E. Technical report, Cloud and Autonomic Computing Center, Rutgers Univ., 2012.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. V. Kal, and K. Schulten. Scalable molecular dynamics with NAMD. J. of Computational Chem., pages 1781–1802, 2005.
A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma. Towards autonomic workload provisioning for enterprise grids and clouds. In IEEE/ACM GRID, 2009.
A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. Autonomic policy adaptation using decentralized online clustering. In ICAC, pages 151–160, 2010.
A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. Design and evaluation of decentralized online clustering. TAAS, 7(3):34, 2012.
I. Raicu, I. Foster, and Y. Zhao. Many-task computing for grids and supercomputers. In Proc. Workshop on Many-Task Computing on Grids and Supercomputers, pages 1–11, 2008.
I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and B. Clifford. Towards loosely. coupled programming on petascale systems. In IEEE/ACM Supercomputing, 2008.
N. Ram and S. Ramakrishran. International cyberinfrastructure: activities around the globe. Cyberinfrastructure Technology Watch Quarterly, 2:15–19, February 2006.
M. Riedel, A. Memon, M. Memon, D. Mallmann, et al. Improving e-Science with Interoperability of the e-Infrastructures EGEE and DEISA. In International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 225–231, Opatija, Croatia, May 2008.
P. Riteau, M. Tsugawa, A. Matsunaga, J. Fortes, and K. Keahey. Large-scale cloud computing research: Sky computing on futuregrid and grid’5000. In ERCIM News, 2010.
B. Rochwerger, D. Breitgand, E. Levy, A. Galis, et al. The reservoir model and architecture for open federated cloud computing. IBM Journal of Research and Development, 53, 2009.
I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, and S. Sadjadi. Looking for an Evolution of Grid Scheduling: Meta-brokering. Grid Middleware and Services: Challenges and Solutions, pages 105–119, August 2008.
I. Rodero, F. Guim, J. Corbalan, L. Fong, and S. Sadjadi. Broker Selection Strategies in Interoperable Grid Systems. Future Gener. Comput. Syst., 26(1):72–86, January 2010.
I. Rodero, F. Guim, J. Corbalan, and A. Goyeneche. The grid backfilling: a multi-site scheduling architecture with data mining prediction techniques. In Grid Middleware and Services, pages 137–152, 2008.
I. Rodero, F. Guim, J. Corbalan, and J. Labarta. How the JSDL can Exploit the Parallelism? In IEEE International Symposium on Cluster Computing and the Grid (CCGrid), pages 275–282, Singapore, May 2006.
I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole. Energy-efficient application-aware online provisioning for virtualized clouds and data centers. In Green Computing Conf., pages 31–45, 2010.
I. Rodero, D. Villegas, N. Bobroff, Y. Liu, L. Fong, and S. M. Sadjadi. Enabling interoperability among grid meta-schedulers. J. Grid Comput., 11(2):311–336, 2013.
C. Schmidt and M. Parashar. Squid: Enabling search in dht-based systems. J. Parallel Distrib. Comput., 68(7):962–975, 2008.
J. Seidel, O. Waldrich, W. Ziegler, P. Wieder, and R. Yahyapour. Using SLA for Resource Management and Scheduling - a Survey, TR-0096. Technical report, Institute on Resource Management and Scheduling, 2007.
B. Sotomayor, R. Montero, I. Llorente, and I. Foster. Virtual infrastructure management in private and hybrid clouds. IEEE Internet Computing, 13:14–22, 2009.
I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet applications. In ACM SIGCOMM, pages 149–160, 2001.
R. Swendsen and J. Wang. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters, 57:2607–2609, 1986.
P. Troger, H. Rajic, A. Haas, and P. Domagalski. Standardization of an API for Distributed Resource Management Systems. In Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, pages 619–626, Washington, DC, USA, 2007.
C. Vazquez, E. Huedo, R. Montero, and I. Llorente. Dynamic provision of computing resources from grid infrastructures and cloud providers. In Grid and Pervasive Computing Conf., pages 113–120, 2009.
T. Vazquez, E. Huedo, R. Montero, and I. Lorente. Evaluation of a Utility Computing Model Based on the Federation of Grid Infrastructures. In International Euro-Par Conference on Parallel Processing, pages 372–381, Rennes, France, August 2007.
C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing: A view of scientific applications. In Proceedings of the 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks, ISPAN ‘09, pages 4–16, Washington, DC, USA, 2009. IEEE Computer Society.
D. Villegas, N. Bobroff, I. Rodero, J. Delgado, et al. Cloud federation in a layered service model. J. Comput. Syst. Sci., 78(5):1330–1344, 2012.
J.-S. Vockler, G. Juve, and M. R. Ewa Deelman and. Experiences using cloud computing for a scientific workflow application. In 2nd Workshop on Scientific Cloud Computing in conjunction with ACM HPDC, pages 402–412, 2011.
Amazon EC2. http://aws.amazon.com/ec2/.
CometCloud Project. http://www.cometcloud.org.
DAS-3 Project. http://www.cs.vu.nl/das.
DEISA Project. http://www.deisa.eu.
D-Grid Project. http://www.d-grid.de.
EGI Europe. http://www.egi.eu.
Eucalyptus. http://open.eucalyptus.com/.
Grid’ 5000 Project. https://www.grid5000.fr.
R. Zhang, M. Parashar, and E. Gallichio. Salsa: Scalable asynchronous replica exchange for parallel molecular dynamics applications. In ICPP, pages 127–134, 2006.
IBM Smart Cloud. http://www.ibm.com/cloud-computing/us/en/.
IEEE Intercloud WG (ICWG) Working Group. http://standards.ieee.org/develop/wg/ICWG-2302_WG.html.
IEEE Standard for Intercloud Interoperability and Federation. http://standards.ieee.org/develop/project/2302.html.
Naregi Project, http://www.naregi.org.
Nimbus Project. http://www.nimbusproject.org.
Open Cloud Computing Interface (OCCI). http://occi-wg.org/.
OpenNebula. http://www.opennebula.org/.
OpenStack. http://openstack.org/.
Open Science Grid. https://www.opensciencegrid.org/.
PRACE Project. http://www.prace-ri.eu.
Siena Initiative. http://www.sienainitiative.eu.
XSEDE Project. https://www.xsede.org/.
Acknowledgements
The research presented in this work is supported in part by US National Science Foundation (NSF) via grants numbers OCI 1310283, OCI 1339036, DMS 1228203 and IIP 0758566, by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) Institute of Scalable Data Management, Analysis and Visualization (SDAV) under award number DE-SC0007455, the Advanced Scientific Computing Research and Fusion Energy Sciences Partnership for Edge Physics Simulations (EPSI) under award number DE-FG02-06ER54857, the ExaCT Combustion Co-Design Center via subcontract number 4000110839 from UT Battelle, and by an IBM Faculty Award. We used resources provided by: XSEDE NSF OCI-1053575, FutureGrid NSF OCI-0910812, and NERSC Center DOE DE-AC02-05CH11231. The research and was conducted as part of the NSF Cloud and Autonomic Computing (CAC) Center at Rutgers University and the Rutgers Discovery Informatics Institute (RDI2). We would also like to acknowledge Hyunjoo Kim, Moustafa AbdelBaky, and Aditya Devarakonda for their contributions to the CometCloud project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Diaz-Montes, J., Rodero, I., Zou, M., Parashar, M. (2014). Federating Advanced Cyberinfrastructures with Autonomic Capabilities. In: Li, X., Qiu, J. (eds) Cloud Computing for Data-Intensive Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1905-5_9
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1905-5_9
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-1904-8
Online ISBN: 978-1-4939-1905-5
eBook Packages: Computer ScienceComputer Science (R0)