Nothing Special   »   [go: up one dir, main page]

Skip to main content

Federating Advanced Cyberinfrastructures with Autonomic Capabilities

  • Chapter
  • First Online:
Cloud Computing for Data-Intensive Applications
  • 1520 Accesses

Abstract

Cloud computing has emerged as a dominant paradigm that has been widely adopted by enterprises. Clouds provide on-demand access to computing utilities, an abstraction of unlimited computing resources, and support for on-demand scale up, scale down and scale out. Clouds are also rapidly joining high performance computing system, clusters and grids as viable platforms for scientific exploration and discovery. Furthermore, dynamically federated Cloud-of-Clouds infrastructure can support heterogeneous and highly dynamic applications requirements by composing appropriate (public and/or private) cloud services and capabilities. As a result, providing scalable and robust mechanisms to federate distributed infrastructures and handle application workflows, that can effectively utilize them, is critical. In this chapter, we present a federation model to support the dynamic federation of resources and autonomic management mechanisms that coordinate multiple workflows to use resources based on objectives. We demonstrate the effectiveness of the proposed framework and autonomic mechanisms through the discussion of an experimental evaluation of illustrative use case application scenarios, and from these experiences, we discuss that such a federation model can support new types of application formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Agarwal, M. Ahmed, A. Berman, B. L. Caron, et al. GridX1: A Canadian computational grid. Future Gener. Comput. Syst., 23:680–687, June 2007.

    Article  Google Scholar 

  2. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement), GFD-R-P.107. Technical report, GRAAP WG, Open Grid Forum, March 2007.

    Google Scholar 

  3. M. D. Assuncao and R. Buyya. Performance analysis of allocation policies for interGrid resource provisioning. Information and Software Technology, 51:42–55, January 2009.

    Article  Google Scholar 

  4. L. F. Bittencourt, C. R. Senna, and E. R. M. Madeira. Enabling execution of service workflows in grid/cloud hybrid systems. In Network Operations and Management Symp. Workshop, pages 343–349, 2010.

    Google Scholar 

  5. N. Bobroff, L. Fong, S. Kalayci, Y. Liu, J. C. Martinez, I. Rodero, S. M. Sadjadi, and D. Villegas. Enabling interoperability among meta-schedulers. In IEEE CCGrid, pages 306–315, 2008.

    Google Scholar 

  6. R. Bolze, F. Cappello, E. Caron, M. Dayde, et al. Grid’5000: a large scale and highly reconfigurable experimental Grid testbed. International Journal of High Performance Computing Applications, 20:481–494, November 2006.

    Article  Google Scholar 

  7. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.

    Article  Google Scholar 

  8. A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud architectures to enable cross-federation. In IEEE CLOUD, pages 337–34, 2010.

    Google Scholar 

  9. M. D. de Assuncao, R. Buyya, and S. Venugopal. Intergrid: a case for internetworking islands of grids. Concurrency Computat. Pract. and Exper., 20(8):997–1024, 2008.

    Article  Google Scholar 

  10. M. D. de Assuncao, A. di Costanzo, and R. Buyya. Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In ACM HPDC, pages 141–150, 2009.

    Google Scholar 

  11. E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ‘08, pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE Press.

    Google Scholar 

  12. T. Dunning and R. Nandkumar. International cyberinfrastructure: activities around the globe. Cyberinfrastructure Technology Watch Quarterly, 2:2–4, February 2006.

    Google Scholar 

  13. E. Elmroth and J. Tordsson. A standards-based grid resource brokering service supporting advance reservations, coallocation, and cross-grid interoperability. Concurr. Comput.: Pract. Exper., 21(18):2298–2335, Dec. 2009.

    Google Scholar 

  14. D. Erwin and D. Snelling. UNICORE: A Grid Computing Environment. In International Euro-Par Conference on Parallel Processing, pages 825–834, Manchester, UK, August 2001.

    Google Scholar 

  15. L. Field, E. Laure, and M. W. Schulz. Grid deployment experiences: Grid interoperation. J. Grid Comput., 7(3):287–296, 2009.

    Article  Google Scholar 

  16. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kauffman, 1999.

    Google Scholar 

  17. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Perfomance Computing Applications, 15(3):200–222, 2001.

    Article  Google Scholar 

  18. G. Fox and D. Gannon. Cloud Programming Paradigms for Technical Computing Applications. Technical report, Indiana University, 2012.

    Google Scholar 

  19. T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A Simple API for Grid Applications (SAGA), GWD-R.72. Technical report, SAGA-CORE Working Group, Open Grid Forum, September 2006.

    Google Scholar 

  20. I. Gorton, Y. Liu, and J. Yin. Exploring architecture options for a federated, cloud-based system biology knowledgebase. In IEEE Intl. Conf. on Cloud Computing Technology and Science, pages 218–225, 2010.

    Google Scholar 

  21. T. Hey and A. Trefethen. The UK e-Science Core Programme and the Grid. Future Gener. Comput. Syst., 18:1017–1031, 2002.

    Article  MATH  Google Scholar 

  22. E. Huedo, R. Montero, and I. Llorente. A recursive architecture for hierarchical grid resource management. Future Gener. Comput. Syst., 25:401–405, April 2009.

    Article  Google Scholar 

  23. K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn., 65:1604–1608, 1996.

    Article  Google Scholar 

  24. A. Iosup, D. Epema, T. Tannenbaum, M. Farrelle, and M. Livny. Inter-Operable Grids through Delegated MatchMaking. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC07), pages 13:1–13:12, Reno, Nevada, November 2007.

    Google Scholar 

  25. A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst., 22(6):931–945, 2011.

    Article  Google Scholar 

  26. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1998.

    Google Scholar 

  27. K. Keahey and T. Freeman. Science clouds: Early experiences in cloud computing for scientific applications. In Cloud Computing and Its Applications (CCA-08), October 2008.

    Google Scholar 

  28. A. Kertesz and P. Kacsuk. Grid Meta-Broker Architecture: Towards an Interoperable Grid Resource Brokering Service. In CoreGRID Workshop on Grid Middleware in conjunction with Euro-Par, LNCS 4375, pages 112–116, Desden, Germany, 2008.

    Google Scholar 

  29. A. Kertész and P. Kacsuk. Gmbs: A new middleware service for making grids interoperable. Future Gener. Comput. Syst., 26(4):542–553, Apr. 2010.

    Article  Google Scholar 

  30. A. Kertesz, I. Rodero, and F. Guim. Bpdl: A data model for grid resource broker capabilities. Technical Report TR-0074, Institute on Resource Management and Scheduling, CoreGRID - Network of Excellence, March 2007.

    Google Scholar 

  31. A. Kertesz, I. Rodero, and F. Guim. Meta-Brokering Solutions for Expanding Grid Middleware Limitations. In Workshop on Secure, Trusted, Manageable and Controllable Grid Services (SGS) in conjunction with International Euro-Par Conference on Parallel Processing, Gran Canaria, Spain, July 2008.

    Google Scholar 

  32. A. Kertžsz, I. Rodero, F. Guim, A. Kertžsz, I. Rodero, and F. Guim. A data model for grid resource broker capabilities. In Grid Middleware and Services, pages 39–52, 2008.

    Google Scholar 

  33. H. Kim, Y. E. Khamra, I. Rodero, S. Jha, and M. Parashar. Autonomic management of application workflows on hybrid computing infrastructure. Sci. Program., 19(2–3):75–89, 2011.

    Google Scholar 

  34. H. Kim, M. Parashar, D. J. Foran, and L. Yang. Investigating the use of autonomic cloudbursts for high-throughput medical image registration. In IEEE/ACM GRID, pages 34–41, 2009.

    Google Scholar 

  35. K. Leal, E. Huedo, and I. M. Llorente. A decentralized model for scheduling independent tasks in federated grids. Future Gener. Comput. Syst., 25(8):840–852, 2009.

    Article  Google Scholar 

  36. Z. Li and M. Parashar. A computational infrastructure for grid-based asynchronous parallel applications. In HPDC, pages 229–230, 2007.

    Google Scholar 

  37. Z. Li and M. Parashar. Grid-based asynchronous replica exchange. In IEEE/ACM GRID, pages 201–208, 2007.

    Google Scholar 

  38. M. Marzolla, P. Andreetto, V. Venturi, A. Ferraro, et al. Open Standards-Based Interoperability of Job Submission and Management Interfaces across the Grid Middleware Platforms gLite and UNICORE. In IEEE International Conference on e-Science and Grid Computing, pages 592–601, Bangalore, India, December 2007.

    Google Scholar 

  39. H. Mohamed and D. Epema. KOALA: a Co-allocating Grid Scheduler. Concurrency and Computation: Practice & Experience, 20:1851–1876, November 2008.

    Article  Google Scholar 

  40. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. The eucalyptus open-source cloud-computing system. In IEEE/ACM CCGRID, pages 124–131, 2009.

    Google Scholar 

  41. A. Oleksiak, A. Tullo, P. Graham, T. Kuczynski, J. Nabrzyski, D. Szejnfeld, and T. Sloan. HPC-Europa: Towards Uniform Access to European HPC Infrastructures. In IEEE/ACM International Workshop on Grid Computing, pages 308–311, November 2005.

    Google Scholar 

  42. S. Ostermann, R. Prodan, and T. Fahringer. Extending grids with cloud resource management for scientific computing. In IEEE/ACM Grid, pages 42–49, 2009.

    Google Scholar 

  43. M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda. Cloud Paradigm and Practices for CDS&E. Technical report, Cloud and Autonomic Computing Center, Rutgers Univ., 2012.

    Google Scholar 

  44. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. V. Kal, and K. Schulten. Scalable molecular dynamics with NAMD. J. of Computational Chem., pages 1781–1802, 2005.

    Google Scholar 

  45. A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma. Towards autonomic workload provisioning for enterprise grids and clouds. In IEEE/ACM GRID, 2009.

    Google Scholar 

  46. A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. Autonomic policy adaptation using decentralized online clustering. In ICAC, pages 151–160, 2010.

    Google Scholar 

  47. A. Quiroz, M. Parashar, N. Gnanasambandam, and N. Sharma. Design and evaluation of decentralized online clustering. TAAS, 7(3):34, 2012.

    Google Scholar 

  48. I. Raicu, I. Foster, and Y. Zhao. Many-task computing for grids and supercomputers. In Proc. Workshop on Many-Task Computing on Grids and Supercomputers, pages 1–11, 2008.

    Google Scholar 

  49. I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and B. Clifford. Towards loosely. coupled programming on petascale systems. In IEEE/ACM Supercomputing, 2008.

    Google Scholar 

  50. N. Ram and S. Ramakrishran. International cyberinfrastructure: activities around the globe. Cyberinfrastructure Technology Watch Quarterly, 2:15–19, February 2006.

    Google Scholar 

  51. M. Riedel, A. Memon, M. Memon, D. Mallmann, et al. Improving e-Science with Interoperability of the e-Infrastructures EGEE and DEISA. In International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 225–231, Opatija, Croatia, May 2008.

    Google Scholar 

  52. P. Riteau, M. Tsugawa, A. Matsunaga, J. Fortes, and K. Keahey. Large-scale cloud computing research: Sky computing on futuregrid and grid’5000. In ERCIM News, 2010.

    Google Scholar 

  53. B. Rochwerger, D. Breitgand, E. Levy, A. Galis, et al. The reservoir model and architecture for open federated cloud computing. IBM Journal of Research and Development, 53, 2009.

    Google Scholar 

  54. I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, and S. Sadjadi. Looking for an Evolution of Grid Scheduling: Meta-brokering. Grid Middleware and Services: Challenges and Solutions, pages 105–119, August 2008.

    Google Scholar 

  55. I. Rodero, F. Guim, J. Corbalan, L. Fong, and S. Sadjadi. Broker Selection Strategies in Interoperable Grid Systems. Future Gener. Comput. Syst., 26(1):72–86, January 2010.

    Article  Google Scholar 

  56. I. Rodero, F. Guim, J. Corbalan, and A. Goyeneche. The grid backfilling: a multi-site scheduling architecture with data mining prediction techniques. In Grid Middleware and Services, pages 137–152, 2008.

    Google Scholar 

  57. I. Rodero, F. Guim, J. Corbalan, and J. Labarta. How the JSDL can Exploit the Parallelism? In IEEE International Symposium on Cluster Computing and the Grid (CCGrid), pages 275–282, Singapore, May 2006.

    Google Scholar 

  58. I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole. Energy-efficient application-aware online provisioning for virtualized clouds and data centers. In Green Computing Conf., pages 31–45, 2010.

    Google Scholar 

  59. I. Rodero, D. Villegas, N. Bobroff, Y. Liu, L. Fong, and S. M. Sadjadi. Enabling interoperability among grid meta-schedulers. J. Grid Comput., 11(2):311–336, 2013.

    Article  Google Scholar 

  60. C. Schmidt and M. Parashar. Squid: Enabling search in dht-based systems. J. Parallel Distrib. Comput., 68(7):962–975, 2008.

    Article  MATH  Google Scholar 

  61. J. Seidel, O. Waldrich, W. Ziegler, P. Wieder, and R. Yahyapour. Using SLA for Resource Management and Scheduling - a Survey, TR-0096. Technical report, Institute on Resource Management and Scheduling, 2007.

    Google Scholar 

  62. B. Sotomayor, R. Montero, I. Llorente, and I. Foster. Virtual infrastructure management in private and hybrid clouds. IEEE Internet Computing, 13:14–22, 2009.

    Article  Google Scholar 

  63. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet applications. In ACM SIGCOMM, pages 149–160, 2001.

    Google Scholar 

  64. R. Swendsen and J. Wang. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters, 57:2607–2609, 1986.

    Article  MathSciNet  Google Scholar 

  65. P. Troger, H. Rajic, A. Haas, and P. Domagalski. Standardization of an API for Distributed Resource Management Systems. In Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, pages 619–626, Washington, DC, USA, 2007.

    Google Scholar 

  66. C. Vazquez, E. Huedo, R. Montero, and I. Llorente. Dynamic provision of computing resources from grid infrastructures and cloud providers. In Grid and Pervasive Computing Conf., pages 113–120, 2009.

    Google Scholar 

  67. T. Vazquez, E. Huedo, R. Montero, and I. Lorente. Evaluation of a Utility Computing Model Based on the Federation of Grid Infrastructures. In International Euro-Par Conference on Parallel Processing, pages 372–381, Rennes, France, August 2007.

    Google Scholar 

  68. C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing: A view of scientific applications. In Proceedings of the 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks, ISPAN ‘09, pages 4–16, Washington, DC, USA, 2009. IEEE Computer Society.

    Google Scholar 

  69. D. Villegas, N. Bobroff, I. Rodero, J. Delgado, et al. Cloud federation in a layered service model. J. Comput. Syst. Sci., 78(5):1330–1344, 2012.

    Article  Google Scholar 

  70. J.-S. Vockler, G. Juve, and M. R. Ewa Deelman and. Experiences using cloud computing for a scientific workflow application. In 2nd Workshop on Scientific Cloud Computing in conjunction with ACM HPDC, pages 402–412, 2011.

    Google Scholar 

  71. Amazon EC2. http://aws.amazon.com/ec2/.

  72. CometCloud Project. http://www.cometcloud.org.

  73. DAS-3 Project. http://www.cs.vu.nl/das.

  74. DEISA Project. http://www.deisa.eu.

  75. D-Grid Project. http://www.d-grid.de.

  76. EGI Europe. http://www.egi.eu.

  77. Eucalyptus. http://open.eucalyptus.com/.

  78. Grid’ 5000 Project. https://www.grid5000.fr.

  79. R. Zhang, M. Parashar, and E. Gallichio. Salsa: Scalable asynchronous replica exchange for parallel molecular dynamics applications. In ICPP, pages 127–134, 2006.

    Google Scholar 

  80. IBM Smart Cloud. http://www.ibm.com/cloud-computing/us/en/.

  81. IEEE Intercloud WG (ICWG) Working Group. http://standards.ieee.org/develop/wg/ICWG-2302_WG.html.

  82. IEEE Standard for Intercloud Interoperability and Federation. http://standards.ieee.org/develop/project/2302.html.

  83. Naregi Project, http://www.naregi.org.

  84. Nimbus Project. http://www.nimbusproject.org.

  85. Open Cloud Computing Interface (OCCI). http://occi-wg.org/.

  86. OpenNebula. http://www.opennebula.org/.

  87. OpenStack. http://openstack.org/.

  88. Open Science Grid. https://www.opensciencegrid.org/.

  89. PRACE Project. http://www.prace-ri.eu.

  90. Siena Initiative. http://www.sienainitiative.eu.

  91. XSEDE Project. https://www.xsede.org/.

Download references

Acknowledgements

The research presented in this work is supported in part by US National Science Foundation (NSF) via grants numbers OCI 1310283, OCI 1339036, DMS 1228203 and IIP 0758566, by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) Institute of Scalable Data Management, Analysis and Visualization (SDAV) under award number DE-SC0007455, the Advanced Scientific Computing Research and Fusion Energy Sciences Partnership for Edge Physics Simulations (EPSI) under award number DE-FG02-06ER54857, the ExaCT Combustion Co-Design Center via subcontract number 4000110839 from UT Battelle, and by an IBM Faculty Award. We used resources provided by: XSEDE NSF OCI-1053575, FutureGrid NSF OCI-0910812, and NERSC Center DOE DE-AC02-05CH11231. The research and was conducted as part of the NSF Cloud and Autonomic Computing (CAC) Center at Rutgers University and the Rutgers Discovery Informatics Institute (RDI2). We would also like to acknowledge Hyunjoo Kim, Moustafa AbdelBaky, and Aditya Devarakonda for their contributions to the CometCloud project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Diaz-Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Diaz-Montes, J., Rodero, I., Zou, M., Parashar, M. (2014). Federating Advanced Cyberinfrastructures with Autonomic Capabilities. In: Li, X., Qiu, J. (eds) Cloud Computing for Data-Intensive Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1905-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1905-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1904-8

  • Online ISBN: 978-1-4939-1905-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics