Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling and Deorphanization of Orphan GPCRs

  • Protocol
  • First Online:
Computational Methods for GPCR Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Civelli O, Saito Y, Wang Z, Nothacker HP, Reinscheid RK (2006) Orphan GPCRs and their ligands. Pharmacol Ther 110(3):525–532. https://doi.org/10.1016/j.pharmthera.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  2. Chung S, Funakoshi T, Civelli O (2008) Orphan GPCR research. Br J Pharmacol 153(Suppl 1):S339–S346. https://doi.org/10.1038/sj.bjp.0707606

    CAS  PubMed  Google Scholar 

  3. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  4. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100(8):4903–4908. https://doi.org/10.1073/pnas.0230374100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tautermann CS (2014) GPCR structures in drug design, emerging opportunities with new structures. Bioorg Med Chem Lett 24(17):4073–4079. https://doi.org/10.1016/j.bmcl.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  6. Stockert JA, Devi LA (2015) Advancements in therapeutically targeting orphan GPCRs. Front Pharmacol 8(6):100. https://doi.org/10.3389/fphar.2015.00100

  7. Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98:541–555. https://doi.org/10.1016/j.bcp.2015.08.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumari P, Ghosh E, Shukla AK (2015) Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol Med 21(11):687–701. https://doi.org/10.1016/j.molmed.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Shore DM, Reggio PH (2015) The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 6:69. https://doi.org/10.3389/fphar.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tang XL, Wang Y, Li DL, Luo J, Liu MY (2012) Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 33(3):363–371. https://doi.org/10.1038/aps.2011.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotarsky K, Nilsson NE (2004) Reverse pharmacology and the de-orphanization of 7TM receptors. Drug Discov Today Technol 1(2):99–104. https://doi.org/10.1016/j.ddtec.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Jimonet P, Jäger R (2004) Strategies for designing GPCR-focused libraries and screening sets. Curr Opin Drug Discov Devel 7(3):325–333

    CAS  PubMed  Google Scholar 

  13. Bradshaw HB, Lee SH, McHugh D (2009) Orphan endogenous lipids and orphan GPCRs: a good match. Prostaglandins Other Lipid Mediat 89(3-4):131–134. https://doi.org/10.1016/j.prostaglandins.2009.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmad R, Wojciech S, Jockers R (2015) Hunting for the function of orphan GPCRs – beyond the search for the endogenous ligand. Br J Pharmacol 172(13):3212–3228. https://doi.org/10.1111/bph.12942

  15. Thomsen W, Leonard J, Behan DP (2004) Orphan GPCR target validation. Curr Opin Mol Ther 6(6):640–656

    CAS  PubMed  Google Scholar 

  16. Wise A, Jupe SC, Rees S (2004) The identification of ligands at orphan G-protein coupled receptors. Annu Rev Pharmacol Toxicol 44:43–66. https://doi.org/10.1146/annurev.pharmtox.44.101802.121419

    Article  CAS  PubMed  Google Scholar 

  17. Lecca D, Abbracchio MP (2008) Deorphanisation of G protein-coupled receptors: a tool to provide new insights in nervous system pathophysiology and new targets for psycho-active drugs. Neurochem Int 52(3):339–351. https://doi.org/10.1016/j.neuint.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  18. Eberini I, Daniele S, Parravicini C, Sensi C, Trincavelli ML, Martini C, Abbracchio MP (2011) In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. J Comput Aided Mol Des 25(8):743–752. https://doi.org/10.1007/s10822-011-9455-8

    Article  CAS  PubMed  Google Scholar 

  19. Bermudez M, Wolber G (2015) Structure versus function – The impact of computational methods on the discovery of specific GPCR–ligands. Bioorg Med Chem 23(14):3907–3912. https://doi.org/10.1016/j.bmc.2015.03.026

  20. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  21. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. https://doi.org/10.1021/ci3001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohara Y, Aramaki Y, Mori M, Kimura E, Imai T, Ito F, Ogi K, Sugo T, Kobayashi H, Hayase Y (2007) Agent for controlling function of GPR34 receptor. European Patent Application EP1849465A1, 31 Oct 2007

    Google Scholar 

  24. Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks R, Irvine SA, Pettersson J, Goncharoff N, Hersey A, Overington JP (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44(D1):D1220–D1228. https://doi.org/10.1093/nar/gkv1253

    Article  CAS  PubMed  Google Scholar 

  25. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623. https://doi.org/10.1002/prot.10465

    Article  CAS  PubMed  Google Scholar 

  26. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  27. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2014) The protein data bank archive as an open data resource. J Comput Aided Mol Des 28(10):1009–1014. https://doi.org/10.1007/s10822-014-9770-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM (2016) Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536(7617):484–487. https://doi.org/10.1038/nature19107

  29. Cotecchia S, Exum S, Caron MG, Lefkowitz RJ (1990) Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A 87(8):2896–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143(1):51–60. https://doi.org/10.1016/j.pharmthera.2014.02.004

  31. Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104(3):173–206. https://doi.org/10.1016/j.pharmthera.2004.08.008

    Article  PubMed  Google Scholar 

  32. Tao YX (2008) Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther 120(2):129–148. https://doi.org/10.1016/j.pharmthera.2008.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diaz C, Leplatois P, Angelloz-Nicoud P, Lecomte M, Josse A, Delpech M, Pecceu F, Loison G, Shire D, Pascal M, Ferrara P, Ferran E (2011) Differential virtual screening (DVS) with active and inactive molecular models for finding and profiling GPCR modulators: case of the CCK1 receptor. Mol Inf 30(4):345–358. https://doi.org/10.1002/minf.201000180

    Article  CAS  Google Scholar 

  34. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  CAS  PubMed  Google Scholar 

  35. Baldwin JM, Schertler GF, Unger VM (1997) An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 272(1):144–164

    Article  CAS  PubMed  Google Scholar 

  36. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. https://doi.org/10.1126/science.1150577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491. https://doi.org/10.1038/nature07101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217. https://doi.org/10.1126/science.1164772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isberg V, Mordalski S, Munk C, Rataj K, Harpsøe K, Hauser AS, Vroling B, Bojarski AJ, Vriend G, Gloriam DE (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44(D1):D356–D364. https://doi.org/10.1093/nar/gkv1178

    Article  CAS  PubMed  Google Scholar 

  40. Cooke RM, Brown AJ, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20(11):1355–1364. https://doi.org/10.1016/j.drudis.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Shonberg J, Kling RC, Gmeiner P, Löber S (2015) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23(14):3880–3906. https://doi.org/10.1016/j.bmc.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  42. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  43. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. https://doi.org/10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  44. Surgand JS, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62(2):509–538. https://doi.org/10.1002/prot20768

    Article  CAS  PubMed  Google Scholar 

  45. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194. https://doi.org/10.1038/nature11896

    Article  CAS  PubMed  Google Scholar 

  46. Gloriam DE, Foord SM, Blaney FE, Garland SL (2009) Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design. J Med Chem 52(14):4429–4442. https://doi.org/10.1021/jm900319e

    Article  CAS  PubMed  Google Scholar 

  47. Costanzi S (2013) Modeling G protein-coupled receptors and their interactions with ligands. Curr Opin Struct Biol 23(2):185–190. https://doi.org/10.1016/j.sbi.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  48. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428

    Article  CAS  PubMed  Google Scholar 

  49. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  50. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21(4):289–307

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54(6):1717–1736. https://doi.org/10.1021/ci500081m

    Article  CAS  PubMed  Google Scholar 

  52. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schütz M, Plückthun A (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci U S A 111(6):E655–E662. https://doi.org/10.1073/pnas.1317903111

  53. Krumm BE, White JF, Shah P, Grisshammer R (2015) Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun 6:7895. https://doi.org/10.1038/ncomms8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Setoh M, Ishii N, Kono M, Miyanohana Y, Shiraishi E, Harasawa T, Ota H, Odani T, Kanzaki N, Aoyama K, Hamada T, Kori M (2014) Discovery of the first potent and orally available agonist of the orphan G-protein-coupled receptor 52. J Med Chem 57(12):5226–5237. https://doi.org/10.1021/jm5002919

    Article  CAS  PubMed  Google Scholar 

  55. Ritscher L, Engemaier E, Stäubert C, Liebscher I, Schmidt P, Hermsdorf T, Römpler H, Schulz A, Schöneberg T (2012) The ligand specificity of the G-protein-coupled receptor GPR34. Biochem J 443(3):841–850. https://doi.org/10.1042/BJ20112090

    Article  CAS  PubMed  Google Scholar 

  56. Xiao SH, Reagan JD, Lee PH, Fu A, Schwandner R, Zhao X, Knop J, Beckmann H, Young SW (2008) High throughput screening for orphan and liganded GPCRs. Comb Chem High Throughput Screen 11(3):195–215

    Article  CAS  PubMed  Google Scholar 

  57. Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kernëis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albène D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P (2013) A strategy combining differential low-throughput screening and virtual screening (DLS-VS) accelerating the discovery of new modulators for the orphan GPR34 receptor. Mol Inform 32(2):213–229. https://doi.org/10.1002/minf.201200047

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantino Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diaz, C., Angelloz-Nicoud, P., Pihan, E. (2018). Modeling and Deorphanization of Orphan GPCRs. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics