Nothing Special   »   [go: up one dir, main page]

Skip to main content

Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model

  • Living reference work entry
  • First Online:
Encyclopedia of Database Systems

Synonyms

BIR model; Probabilistic model; RSJ model

Definition

Information retrieval (IR) systems aim to retrieve relevant documents while not retrieving non-relevant ones. This can be viewed as the foundation and justification of the binary independence retrieval (BIR) model, which proposes to base the ranking of documents on the division of the probability of relevance and non-relevance.

For a set r of relevant documents, and a set \( \overline{r} \) of non-relevant documents, the BIR model defines the following term weight and retrieval status value (RSV) for a document-query pair “d, q”:

$$\mathrm{birw}(t,r,\overline{r}):=\frac{P(t|r)\cdotp {P}(\overline{t}|\overline{r})}{P(t|\overline{r})\cdotp {P}(\overline{t}|r)} $$
(1)
$$ {\mathrm{RSV}}_{\mathrm{BIR}}(d,q,r,\overline{r}):=\sum_{t\in d\cap q} \log \mathrm{birw}(t,r,\overline{r}) $$
(2)

Here, P(t|r) is the probability that term t occurs in the relevant documents, and \( P(t|\overline{r}) \) is the respective probability for term t...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Chaudhuri S, Das G, Hristidis V, Weikum G. Probabilistic ranking of database query results. In: Proceedings of the 30th international conference on very large data bases. 2004. p. 888–99.

    Google Scholar 

  2. Croft WB, Harper DJ. Using probabilistic models of document retrieval without relevance information. J. Doc. 1979;35:285–95.

    Article  Google Scholar 

  3. Grossman DA, Frieder O. Information retrieval. Algorithms and heuristics. 2nd ed. volume 15 of The Information Retrieval Series. Berlin:Springer; 2004.

    Google Scholar 

  4. Harper DJ, van Rijsbergen CJ. An evaluation of feedback in document retrieval using cooccurrence data. J. Doc. 1978;34:189–216.

    Article  Google Scholar 

  5. Belew RK. Finding out about: Cambridge University Press; 2000.

    Google Scholar 

  6. van Rijsbergen CJ. Information Retrieval. 2nd ed. London: Butterworths; 1979. http://www.dcs.glasgow.ac.uk/Keith/Preface.html

    MATH  Google Scholar 

  7. Robertson S. On event spaces and probabilistic models in information retrieval. Inform Retr J. 2005;8(2):319–29.

    Article  Google Scholar 

  8. Robertson SE. The probability ranking principle in IR. J Doc. 1977;33:294–304.

    Article  Google Scholar 

  9. Robertson SE. Understanding inverse document frequency: On theoretical arguments for idf. J. Doc. 2004;60:503–20.

    Article  Google Scholar 

  10. Robertson SE, Sparck JK. Relevance weighting of search terms. J Am Soc Inf Sci. 1976;27:129–46.

    Article  Google Scholar 

  11. Robertson SE, Walker S. On relevance weights with little relevance information. In: Proceedings of the 20th annual international ACM SIGIR conference on research and development in information retrieval. 1997. p. 16–24.

    Google Scholar 

  12. Roelleke T, Wang J. A parallel derivation of probabilistic information retrieval models. In: Proceedings of the 32nd annual international ACM SIGIR conference on research and development in information retrieval. 2006. p. 107–14.

    Google Scholar 

  13. de Vries A, Roelleke T. Relevance information: a loss of entropy but a gain for IDF? In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval. 2005. p. 282–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Roelleke .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Roelleke, T., Wang, J., Robertson, S. (2016). Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model. In: Liu, L., Özsu, M. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-7993-3_919-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7993-3_919-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4899-7993-3

  • eBook Packages: Living Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics