Definition
Uncertain data appears naturally in many real-world applications for a variety of reasons, ranging from inherent limitations of the measurement or monitoring infrastructures to widespread use of statistical analysis and probabilistic inference. Further, the uncertainties associated with different entities or facts in the data are often correlated with each other. For instance, two facts may be known to be mutually exclusive, i.e., even if we are uncertain about which of the two are true, we may know that both the facts cannot be simultaneously true. Oftentimes the correlations are more complex; for example, given two uncertain facts, we may know that if one of them is true, then the probability for the other being true is higher and vice versa. To manage such correlated data in a principled manner, the uncertain data model must be expressive enough to allow capturing such...
References
Aggarwal CC. Managing and mining uncertain data. New York: Springer Incorporated; 2009.
Cheng R, Kalashnikov D, Prabhakar S. Evaluating probabilistic queries over imprecise data. In: Proceedings of the ACM SIGMOD International Conference on Management Of Data (SIGMOD); 2003.
Cowell RG, Philip Dawid A, Lauritzen SL, Spiegelhater DJ. Probabilistic networks and expert systems. New York: Springer; 1999.
Dalvi N, Suciu D. Efficient query evaluation on probabilistic databases. Int J Very Large Data Bases (VLDB). 2006.
Das Sarma A, Benjelloun O, Halevy A, Widom J. Working models for uncertain data. In: International Conference on Data Engineering; 2006.
Deshpande A, Guestrin C, Madden S, Hellerstein JM, Hong W. Model-driven data acquisition in sensor networks. In: International Conference on Very Large Data Bases; 2004.
Deshpande A, Getoor L, Sen P. Graphical models for uncertain data. In: Aggarwal C, editor. Managing and mining uncertain data. New York: Springer; 2009.
Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans Inf Syst. 1997;15(1):32.
Getoor L, Taskar B, editors. Introduction to statistical relational learning. Cambridge: MIT Press; 2007.
Jayram TS, Krishnamurthy R, Raghavan S, Vaithyanathan S, Zhu H. Avatar information extraction system. In: IEEE Data Engineering Bulletin; 2006.
Jha A, Suciu D. Probabilistic databases with markoviews. Proc VLDB Endowment (PVLDB). 2012;5(11):1160–71.
Jordan MI, editor. Learning in graphical models. Cambridge: MIT Press; 1999.
Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An introduction to variational methods for graphical models. Mach Learn. 1999;37(2):183–233.
Kanagal B, Deshpande A. Online filtering, smoothing and probabilistic modeling of streaming data. In: ICDE; 2008.
Kanagal B, Deshpande A. Indexing correlated probabilistic databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD); 2009. p. 455–68.
Kanagal B, Deshpande A. Lineage processing on correlated probabilistic databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD); 2010.
Murphy KP, Weiss Y, Jordan MI. Loopy belief propagation for approximate inference: an empirical study. In: UAI; 1999. p. 467–75.
Pearl J. Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann; 1988.
Poole D. First-order probabilistic inference. In: International Joint Conferences on Artificial Intelligence; 2003.
Rekatsinas T, Deshpande A, Getoor L. Local structure and determinism in probabilistic databases. In: SIGMOD Conference; 2012. p. 373–84.
Sen P, Deshpande A, Getoor L. Exploiting shared correlations in probabilistic databases. In: VLDB; 2008.
Sen P, Deshpande A, Getoor L. PrDB: managing and exploiting rich correlations in probabilistic databases. VLDB J. 2009;18(5):1065–90.
Suciu D, Olteanu D, Ré C, Koch C. Probabilistic databases. Synth Lect Data Manag. 2011;3(2):1–180.
Wick M, McCallum A, Miklau G. Scalable probabilistic databases with factor graphs and MCMC. Proc VLDB Endowment. 2010;3(1–2):794–804.
Zhe Wang D, Michelakis E, Garofalakis M, Hellerstein JM. Bayesstore: managing large, uncertain data repositories with probabilistic graphical models. Proc VLDB Endowment (PVLDB). 2008;1(1):340–51.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this entry
Cite this entry
Deshpande, A. (2017). Graphical Models for Uncertain Data Management. In: Liu, L., Özsu, M. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-7993-3_80741-1
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7993-3_80741-1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4899-7993-3
Online ISBN: 978-1-4899-7993-3
eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering