Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Regression by Means of S-Estimators

  • Conference paper
Robust and Nonlinear Time Series Analysis

Part of the book series: Lecture Notes in Statistics ((LNS,volume 26))

Abstract

There are at least two reasons why robust regression techniques are useful tools in robust time series analysis. First of all, one often wants to estimate autoregressive parameters in a robust way, and secondly, one sometimes has to fit a linear or nonlinear trend to a time series. In this paper we shall develop a class of methods for robust regression, and briefly comment on their use in time series. These new estimators are introduced because of their invulnerability to large fractions of contaminated data. We propose to call them “S-estimators” because they are based on estimators of scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • ANDREWS, D.F. (1974), “A Robust Method for Multiple Linear Regression,” Technometrics, 16, 523–531.

    Article  MathSciNet  MATH  Google Scholar 

  • ANDREWS, D.F., BICKEL, P.J., HAMPEL, F.R., HUBER, P.J., ROGERS, W.H., and TUKEY, J.W. (1972), Robust Estimates of Location: Survey and Advances, Princeton University Press.

    MATH  Google Scholar 

  • BICKEL, P.J. (1975), “One-Step Huber Estimates in the Linear Model,” Journal of the American Statistical Association, 70, 428–434.

    Article  MathSciNet  MATH  Google Scholar 

  • BROWN, G.W., and MOOD, A.M. (1951), “On Median Tests for Linear Hypotheses,” Proceedings 2nd Berkeley Symposium on Mathematical Statistics and Probability, 159–166.

    Google Scholar 

  • DONOHO, D.L., and HUBER, P.J. (1983), “The notion of Breakdown Point,” in A Festschrift for E.L. Lehmann, Wadsworth.

    Google Scholar 

  • EDGEWORTH, F.Y. (1887), “On Observations Relating to Several Quantities,” Hermathena, 6, 279–285.

    Google Scholar 

  • EFRON, B. (1982), The Jackknife, the Bootstrap and other Resampling Plans, SIAM Monograph No. 38, Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • FIELD, C.A., and HAMPEL, F.R. (1982), “Small-Sample Asymptotic Distributions of M-estimators of Location,” Biometrika, 69, 29–46.

    MathSciNet  MATH  Google Scholar 

  • FRIEDMAN, J.H., and TUKEY, J.W. (1974), “A Projection Pursuit Algorithm for Exploratory Data Analysis,” IEEE Transactions on Computers, C-23, 881–889.

    Article  Google Scholar 

  • GENTLEMAN, W.M. (1965), “Robust Estimation of Multivariate Location by Minimizing p-th power Deviations,” Ph.D. dissertation, Princeton University, and Bell Tel. Laboratories memorandum MM65–1215–16.

    Google Scholar 

  • HAMPEL, F.R. (1971), “A General Qualitative Definition of Robustness,” Annals of Mathematical Statistics, 42, 1887–1896.

    Article  MathSciNet  MATH  Google Scholar 

  • HAMPEL, F.R. (1975), “Beyond Location Parameters: Robust Concepts and Methods,” Bulletin of the International Statistical Institute, 46, 375–382.

    MathSciNet  Google Scholar 

  • HAMPEL, F.R. (1978), “Optimally Bounding the Gross-Error-Sensitivity and the Influence of Position in Factor Space,” 1978 Proceedings of the ASA Statistical Computing Section, 59–64.

    Google Scholar 

  • HAMPEL, F.R., ROUSSEEUW, P.J., and RONCHETTI, E. (1981), “The Change-of-Variance Curve and Optimal Redescending M-estimators,” Journal of the American Statistical Association, 76, 643–648.

    Article  MathSciNet  MATH  Google Scholar 

  • HILL, R.W. (1977), “Robust Regression when there are Outliers in the Carriers,” unpublished Ph.D. dissertation, Harvard University.

    Google Scholar 

  • HODGES, J.L. Jr. (1967), “Efficiency in Normal Samples and Tolerance of Extreme Values for some Estimates of Location,” Proceedings 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 163–168.

    Google Scholar 

  • HUBER, P.J. (1964), “Robust Estimation of a Location Parameter,” Annals of Mathematical Statistics, 35, 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  • HUBER, P.J. (1973), “Robust Regression: Asymptotics, Conjectures and Monte Carlo,” Annals of Statistics, 1, 799–821.

    Article  MathSciNet  MATH  Google Scholar 

  • HUBER, P.J. (1981), Robust Statistics, New York: Wiley.

    Book  MATH  Google Scholar 

  • HUMPHREYS, R.M. (1978), “Studies of Luminous Stars in Nearby Galaxies. I. Supergiants and O stars in the Milky Way,” The Astrophysical Journal Supplement Series, 38, 309–350.

    Article  Google Scholar 

  • JAECKEL, L.A. (1972), “Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals,” Annals of Mathematical Statistics, 5, 1449–1458.

    Article  MathSciNet  Google Scholar 

  • KRASKER, W.S. (1980), “Estimation in Linear Regression Models with Disparate Data Points,” Econometrica, 48, 1333–1346.

    Article  MathSciNet  MATH  Google Scholar 

  • KRASKER, W.S., and WELSCH, R.E. (1982), “Efficient Bounded-Influence Regression Estimation,” Journal of the American Statistical Association, 77, 595–604.

    Article  MathSciNet  MATH  Google Scholar 

  • MALLOWS, C.L. (1975), “On Some Topics in Robustness,” unpublished memorandum, Bell Tel. Laboratories, Murray Hill.

    Google Scholar 

  • MARONNA, R.A., and YOHAI, V.J. (1981), “Asymptotic Behaviour of General M-estimates for Regression and Scale with Random Carriers,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 58, 7–20.

    Article  MathSciNet  MATH  Google Scholar 

  • MARONNA, R.A., BUSTOS, O., and YOHAI, V.J. (1979), “Bias- and Efficiency-Robustness of General M-estimators for Regression with Random Carriers,” in Smoothing Techniques for Curve Estimation, eds. T. Gasser and M. Rosenblatt, New York: Springer Verlag, 91–116.

    Chapter  Google Scholar 

  • RONCHETTI, E., and ROUSSEEUW, P.J. (1982), “Change-of-Varian-ce Sensitivities in Regression Analysis,” Research Report No. 36, Fachgruppe für Statistics, ETH Zürich.

    Google Scholar 

  • ROUSSEEUW, P.J. (1982), “Least Median of Squares Regression,” Research Report No. 178, Centre for Statistics and Operations Research, VUB Brussels.

    Google Scholar 

  • ROUSSEEUW, P.J. (1983), “Multivariate Estimation with High Breakdown Point,” Research Report No. 192, Centre for Statistics and Operations Research, VUB Brussels.

    Google Scholar 

  • SEN, P.K. (1968), “Estimates of the Regression Coefficient Based on Kendall’s Tau,” Journal of the American Statistical Association, 63, 1379–1389.

    Article  MathSciNet  MATH  Google Scholar 

  • SIEGEL, A.F. (1982), “Robust Regression Using Repeated Medians,” Biometrika, 69, 242–244.

    Article  MATH  Google Scholar 

  • THEIL, H. (1950), “A Rank-Invariant Method of Linear and Polynomial Regression Analysis,” I, II and III. Neder-landsche Akademie van Wetenschappen Proceedings Serie A, 53, 386–392, 521–525, and 1397–1412.

    MathSciNet  MATH  Google Scholar 

  • VANSINA, F., and DE GREVE, J.P. (1982), “Close Binary Systems Before and After Mass Transfer,” Astrophysics and Space Science, 87, 377–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rousseeuw, P., Yohai, V. (1984). Robust Regression by Means of S-Estimators. In: Franke, J., Härdle, W., Martin, D. (eds) Robust and Nonlinear Time Series Analysis. Lecture Notes in Statistics, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7821-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7821-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96102-6

  • Online ISBN: 978-1-4615-7821-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics