Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discrete Wavelet Transform and Wavelet Synopses

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems
  • 25 Accesses

Definition

Wavelets are a useful mathematical tool for hierarchically decomposing functions in ways that are both efficient and theoretically sound. Broadly speaking, the wavelet transform of a function consists of a coarse overall approximation together with detail coefficients that influence the function at various scales. The wavelet transform has a long history of successful applications in signal and image processing [11, 12]. Several recent studies have also demonstrated the effectiveness of the wavelet transform (and Haar wavelets, in particular) as a tool for approximate query processing over massive relational tables [2, 7, 8] and continuous data streams [3, 9]. Briefly, the idea is to apply wavelet transform to the input relation to obtain a compact data synopsis that comprises a select small collection of wavelet coefficients. The excellent energy compaction and de-correlation properties of the wavelet transform allow for concise and effective approximate representations...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency moments. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing; 1996. p. 20–9.

    MATH  Google Scholar 

  2. Chakrabarti K, Garofalakis MN, Rastogi R, Shim K. Approximate query processing using wavelets. VLDB J. 2001;10(2–3):199–223.

    MATH  Google Scholar 

  3. Cormode G, Garofalakis M, Sacharidis D. Fast approximate wavelet tracking on streams. In: Advances in Database Technology, Proceedings of the 10th International Conference on Extending Database Technology; 2006.

    Google Scholar 

  4. Deligiannakis A, Garofalakis M, Roussopoulos N. Extended wavelets for multiple measures. ACM Trans Database Syst. June 2007;32(2)

    Article  Google Scholar 

  5. Deshpande A, Garofalakis M, Rastogi R. Independence is good: dependency-based histogram synopses for high-dimensional data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2001.

    Google Scholar 

  6. Garofalakis M, Gibbons PB. Approximate query processing: taming the terabytes. In: Proceedings of the 27th International Conference on Very Large Data Bases; 2001.

    Google Scholar 

  7. Garofalakis M, Gibbons PB. Probabilistic wavelet synopses. ACM Trans Database Syst. March 2004;29(1)

    Article  Google Scholar 

  8. Garofalakis M, Kumar A. Wavelet synopses for general error metrics. ACM Trans Database Syst. December 2005;30(4)

    Article  Google Scholar 

  9. Gilbert AC, Kotidis Y, Muthukrishnan S, Strauss MJ. One-pass wavelet decomposition of data streams. IEEE Trans Knowl Data Eng. May 2003;15(3):541–54.

    Article  Google Scholar 

  10. Guha S, Harb B. Wavelet synopsis for data streams: minimizing non-euclidean error. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2005.p. 88–97.

    Google Scholar 

  11. Jawerth B, Sweldens W. An overview of wavelet based multiresolution analyses. SIAM Rev. 1994;36(3):377–412.

    Article  MathSciNet  MATH  Google Scholar 

  12. Stollnitz EJ, DeRose TD, Salesin DH. Wavelets for computer graphics – theory and applications. San Francisco: Morgan Kaufmann; 1996.

    Google Scholar 

  13. Vitter JS, Wang M. Approximate computation of multidimensional aggregates of sparse data using wavelets. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 193–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minos Garofalakis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Garofalakis, M. (2018). Discrete Wavelet Transform and Wavelet Synopses. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_539

Download citation

Publish with us

Policies and ethics