Synonyms
Data warehouse query processing; Query execution in star/snowflake schemas; Query optimization for multidimensional systems
Definition
Data warehouses usually store a tremendous amount of current and historical data, which is advantageous and yet challenging at the same time, since the particular querying/updating/modeling characteristics make query processing rather difficult due to the high number of degrees of freedom.
Typical data warehouse queries are usually generated by online analytical processing (OLAP), data miningsoftware components, or in an ad hoc manner using toolkits for data scientists in the form of statistical packages and homegrown analytical tools. They show an extremely complex structure and usually address a large number of rows of the underlying database. For example, consider the following query: “Compute the monthly variation in the behavior of seasonal sales for all European countries but restrict the calculations to stores with >1 million turnover...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
N.N. Multidimensional Expressions (MDX) Reference. Available at: http://msdn2.microsoft.com/en-us/library/ms145506.aspx
Plattner H. The impact of columnar in-memory databases on enterprise systems. Proc VLDB Endow. 2014;7(13):1722–9.
Raman V, Attaluri GK, Barber R, Chainani N, Kalmuk D, Samy VK, Leenstra J, Lightstone S, et al. DB2 with BLU acceleration: so much more than just a column store. Proc VLDB Endow. 2013;6(11):1080–91.
Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 1997;26(1):65–74.
Gray J, et al. The Lowell database research self assessment. 2003. Available at: http://research.microsoft.com/~gray/lowell/
Müller I, Sanders P, Lacurie A, Lehner W, Färber F. Cache-efficient aggregation: hashing is sorting. Proceedings of the ACM SIGMOD International Conference on Management of Data; 2015. p. 1123–36.
Data Mining Extensions (DMX) reference. Available at: http://msdn2.microsoft.com/en-us/library/ms132058.aspx
N.N. ISO/IEC 9075–14. Information technology – database languages – SQL – part 14: XML-related specifications (SQL/XML). 2003. Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35341
Faerber F, May N, Lehner W, Grosse P, Mueller I, Rauhe H, Dees J. The SAP HANA database – an architecture overview. IEEE Data Eng Bull. 2012;35(1):28–33.
Tao Y, Zhu Q, Zuzarte C, Lau W. Optimizing large star-schema queries with snowflakes via heuristic-based query rewriting. In: Proceedings of the Conference of the IBM Centre for Advanced Studies on Collaborative Research; 2003. p. 279–93.
Graefe G, Guy W, Kuno HA, Paulley G. Robust query processing (Dagstuhl seminar 12321). Dagstuhl Rep. 2012;2(8):1–15. https://doi.org/10.4230/DagRep.2.8.1
Weipeng PY, Larson P. Eager aggregation and lazy aggregation. In: Proceedings of the 12th International Conference on Very Large Data Bases; 1995. p. 345–57.
Star Schema processing for complex queries. White Paper, Red Brick Systems, Inc., 1997. http://www.redbrick.com/products/white/whitebtm.html.
O’Neil B, Schrader M, Dakin J, Hardy K, Townsend M, Whitmer M. Oracle data warehousing unleashed. Indianapolis: SAMS Publishing; 1997.
He J, Lu M, He B. Revisiting co-processing for hash joins on the coupled CPU-GPU architecture. Proc VLDB Endow. 2013;6(10):889–900.
Teubner J, Woods L. Data processing on FPGAs. In: Morgan Claypool Publishers. Data processing on FPGAs. 2013. p. 1–118.
Sellis TK. Multiple-query optimization. ACM Trans Database Syst. 1988; 13(1):23–52.
Copeland GP, Khoshafian SN. A decomposition storage mode. SIGMOD Rec. 1985;14(4):268–79.
Abadi D, Madden S, Ferreira M. Integrating compression and execution in column-oriented database systems. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2006. p. 671–82.
Chan C-Y. Bitmap index design and evaluation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1998. p. 355–66.
Valduriez P. Join indices. ACM Trans Database Syst. 1987;12(2):218–46.
Weininger A. Efficient execution of joins in a star schema. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2002. p. 542–45.
Hellerstein JM, Haas PJ, Wang HJ. Online aggregation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1997. p. 171–82.
Garofalakis M, Gibbon B. Approximate query processing: taming the TeraBytes. In: Proceedings of the 27th International Conference on Very Large Data Bases; 2001.
Celko J. Joe Celko’s data warehouse and analytic queries in SQL. Morgan Kaufmann; 2006.
Clement TY, Meng W. Principles of database query processing for advanced applications. Morgan Kaufmann; 1997.
Graefe G. Query evaluation techniques for large Databases. ACM Comput Surv. 1993;25(2):73–170.
Gupta A, Mumick I. Materialized views: techniques, implementations and applications. Cambridge, MA: MIT Press; 1999.
Inmon WH. Building the data warehouse. 2nd ed. New York: Wiley.
Niemiec R. Oracle database 10g performance tuning tips & techniques; 2007.
Roussopoulos N. The logical access path schema of a database. IEEE Trans Softw Eng. 1982;8(6):563–73.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this entry
Cite this entry
Lehner, W. (2018). Query Processing in Data Warehouses. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_298
Download citation
DOI: https://doi.org/10.1007/978-1-4614-8265-9_298
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-8266-6
Online ISBN: 978-1-4614-8265-9
eBook Packages: Computer ScienceReference Module Computer Science and Engineering