Nothing Special   »   [go: up one dir, main page]

Skip to main content

Query Processing in Data Warehouses

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems
  • 53 Accesses

Synonyms

Data warehouse query processing; Query execution in star/snowflake schemas; Query optimization for multidimensional systems

Definition

Data warehouses usually store a tremendous amount of current and historical data, which is advantageous and yet challenging at the same time, since the particular querying/updating/modeling characteristics make query processing rather difficult due to the high number of degrees of freedom.

Typical data warehouse queries are usually generated by online analytical processing (OLAP), data miningsoftware components, or in an ad hoc manner using toolkits for data scientists in the form of statistical packages and homegrown analytical tools. They show an extremely complex structure and usually address a large number of rows of the underlying database. For example, consider the following query: “Compute the monthly variation in the behavior of seasonal sales for all European countries but restrict the calculations to stores with >1 million turnover...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. N.N. Multidimensional Expressions (MDX) Reference. Available at: http://msdn2.microsoft.com/en-us/library/ms145506.aspx

  2. Plattner H. The impact of columnar in-memory databases on enterprise systems. Proc VLDB Endow. 2014;7(13):1722–9.

    Article  Google Scholar 

  3. Raman V, Attaluri GK, Barber R, Chainani N, Kalmuk D, Samy VK, Leenstra J, Lightstone S, et al. DB2 with BLU acceleration: so much more than just a column store. Proc VLDB Endow. 2013;6(11):1080–91.

    Article  Google Scholar 

  4. Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 1997;26(1):65–74.

    Article  Google Scholar 

  5. Gray J, et al. The Lowell database research self assessment. 2003. Available at: http://research.microsoft.com/~gray/lowell/

  6. Müller I, Sanders P, Lacurie A, Lehner W, Färber F. Cache-efficient aggregation: hashing is sorting. Proceedings of the ACM SIGMOD International Conference on Management of Data; 2015. p. 1123–36.

    Google Scholar 

  7. Data Mining Extensions (DMX) reference. Available at: http://msdn2.microsoft.com/en-us/library/ms132058.aspx

  8. N.N. ISO/IEC 9075–14. Information technology – database languages – SQL – part 14: XML-related specifications (SQL/XML). 2003. Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35341

  9. Faerber F, May N, Lehner W, Grosse P, Mueller I, Rauhe H, Dees J. The SAP HANA database – an architecture overview. IEEE Data Eng Bull. 2012;35(1):28–33.

    Google Scholar 

  10. Tao Y, Zhu Q, Zuzarte C, Lau W. Optimizing large star-schema queries with snowflakes via heuristic-based query rewriting. In: Proceedings of the Conference of the IBM Centre for Advanced Studies on Collaborative Research; 2003. p. 279–93.

    Google Scholar 

  11. Graefe G, Guy W, Kuno HA, Paulley G. Robust query processing (Dagstuhl seminar 12321). Dagstuhl Rep. 2012;2(8):1–15. https://doi.org/10.4230/DagRep.2.8.1

  12. Weipeng PY, Larson P. Eager aggregation and lazy aggregation. In: Proceedings of the 12th International Conference on Very Large Data Bases; 1995. p. 345–57.

    Google Scholar 

  13. Star Schema processing for complex queries. White Paper, Red Brick Systems, Inc., 1997. http://www.redbrick.com/products/white/whitebtm.html.

  14. O’Neil B, Schrader M, Dakin J, Hardy K, Townsend M, Whitmer M. Oracle data warehousing unleashed. Indianapolis: SAMS Publishing; 1997.

    Google Scholar 

  15. He J, Lu M, He B. Revisiting co-processing for hash joins on the coupled CPU-GPU architecture. Proc VLDB Endow. 2013;6(10):889–900.

    Article  Google Scholar 

  16. Teubner J, Woods L. Data processing on FPGAs. In: Morgan Claypool Publishers. Data processing on FPGAs. 2013. p. 1–118.

    Article  Google Scholar 

  17. Sellis TK. Multiple-query optimization. ACM Trans Database Syst. 1988; 13(1):23–52.

    Article  Google Scholar 

  18. Copeland GP, Khoshafian SN. A decomposition storage mode. SIGMOD Rec. 1985;14(4):268–79.

    Article  Google Scholar 

  19. Abadi D, Madden S, Ferreira M. Integrating compression and execution in column-oriented database systems. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2006. p. 671–82.

    Google Scholar 

  20. Chan C-Y. Bitmap index design and evaluation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1998. p. 355–66.

    Google Scholar 

  21. Valduriez P. Join indices. ACM Trans Database Syst. 1987;12(2):218–46.

    Article  Google Scholar 

  22. Weininger A. Efficient execution of joins in a star schema. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2002. p. 542–45.

    Google Scholar 

  23. Hellerstein JM, Haas PJ, Wang HJ. Online aggregation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1997. p. 171–82.

    Google Scholar 

  24. Garofalakis M, Gibbon B. Approximate query processing: taming the TeraBytes. In: Proceedings of the 27th International Conference on Very Large Data Bases; 2001.

    Google Scholar 

  25. Celko J. Joe Celko’s data warehouse and analytic queries in SQL. Morgan Kaufmann; 2006.

    Google Scholar 

  26. Clement TY, Meng W. Principles of database query processing for advanced applications. Morgan Kaufmann; 1997.

    Google Scholar 

  27. Graefe G. Query evaluation techniques for large Databases. ACM Comput Surv. 1993;25(2):73–170.

    Article  Google Scholar 

  28. Gupta A, Mumick I. Materialized views: techniques, implementations and applications. Cambridge, MA: MIT Press; 1999.

    Google Scholar 

  29. Inmon WH. Building the data warehouse. 2nd ed. New York: Wiley.

    Google Scholar 

  30. Niemiec R. Oracle database 10g performance tuning tips & techniques; 2007.

    Google Scholar 

  31. Roussopoulos N. The logical access path schema of a database. IEEE Trans Softw Eng. 1982;8(6):563–73.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Lehner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lehner, W. (2018). Query Processing in Data Warehouses. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_298

Download citation

Publish with us

Policies and ethics