Nothing Special   »   [go: up one dir, main page]

Skip to main content

Data Replication

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems

Synonyms

Database replication; Replication

Definition

Using data replication, each logical data item of a database has several physical copies each of them located on a different node, also referred to as a site (typically a physical machine). Depending on the context and the type of replication architecture, the term replica can refer to one of the physical copies of a particular data item or to an entire site with all its data copies. Data replication can serve different purposes. Firstly, it can be used to increase availability and provide fault tolerance since the data can, in principle, be accessed as long as one replica is available. Secondly, it can provide low response times in wide-area settings. By storing replicas close to users that want to access the data, replication allows fast local access. Thirdly, access requests can be distributed across the replicas. When the incoming load increases, new replicas can be added to the system, achieving a higher throughput. Thus,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Aguilera MK, Terry DB. The many faces of consistency. IEEE Data Eng Bull. 2016;39(1):3–13.

    Google Scholar 

  2. Almeida S, Leitão J, Rodrigues LET. Chainreaction: a causal+ consistent datastore based on chain replication. In: Proceedings of the 8th ACM SIGOPS/EuroSys European Conference on Computer Systems; 2013. p. 85–98.

    Google Scholar 

  3. Alonso G, Charron-Bost B, Pedone F, Schiper A, editors. Seminar: a 30-year perspective on replication. Monte Verita; 2007.

    Google Scholar 

  4. Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and recovery in database systems. Reading: Addison Wesley; 1987.

    Google Scholar 

  5. Breitbart Y, Komondoor R, Rastogi R, Seshadri S, Silberschatz A. Update propagation protocols for replicated databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 97–108.

    Google Scholar 

  6. Budhiraja N, Marzullo K, Schneider FB, Toueg S. The primary-backup approach. In: Mullender S, editor. Distributed systems. 2nd ed. Reading: Addison Wesley; 1993. p. 199–216.

    Google Scholar 

  7. Cabrera L-F, Pâris J-F, editors. In: Proceedings of the 1st Workshop on Management of Replicated Data; 1990.

    Google Scholar 

  8. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh WC, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D. Spanner: Google’s globally distributed database. ACM Trans Comput Syst. 2013;31(3):8.

    Article  Google Scholar 

  9. Kemme B, editor. Data consistency in the cloud. IEEE Data Eng Bull. 2015;38(1).

    Google Scholar 

  10. Kemme B, editor. Data consistency across research communities. IEEE Data Eng Bull. 2016;39(1).

    Google Scholar 

  11. Faleiro JM, Abadi DJ. FIT: a distributed database performance tradeoff. IEEE Data Eng Bull. 2015;38(1):10–7.

    Google Scholar 

  12. Gilbert S, Lynch NA. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News. 2002;33(2): 51–9.

    Article  Google Scholar 

  13. Gray J, Helland P, O’Neil P, Shasha D. The dangers of replication and a solution. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 173–82.

    Article  Google Scholar 

  14. Guerraoui R, Pavlovic M, Seredinschi D-A. Trade-offs in replicated systems. IEEE Data Eng Bull. 2016;39(1):14–26.

    Google Scholar 

  15. Li C, Porto D, Clement A, Gehrke J, Preguiça NM, Rodrigues R. Making geo-replicated systems fast as possible, consistent when necessary. In: Proceedings of the 10th USENIX Symposium on Operating System Design and Implementation; 2012. p. 265–78.

    Google Scholar 

  16. Lin Y, Kemme B, Patiño-Martínez M, Jiménez-Peris R. Middleware based data replication providing snapshot isolation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2005. p. 419–30.

    Google Scholar 

  17. Lv Q, Cao P, Cohen E, Li K, Shenker S. Search and replication in unstructured peer-to-peer networks. In: Proceedings of the 16th Annual International Conference on Supercomputing; 2002. p. 84–95.

    Google Scholar 

  18. Mahmoud HA, Nawab F, Pucher A, Agrawal D, El Abbadi A. Low-latency multi-datacenter databases using replicated commit. Proc VLDB Endow. 2013;6(9):661–72.

    Article  Google Scholar 

  19. Röhm U, Böhm K, Schek H-J, Schuldt H. FAS - a freshness-sensitive coordination middleware for a cluster of OLAP components. In: Proceedings of the 28th International Conference on Very Large Data Bases; 2002. p. 754–65.

    Chapter  Google Scholar 

  20. Saito Y, Shapiro M. Optimistic replication. ACM Comput Surv. 2005;37(1):42–81.

    Article  MATH  Google Scholar 

  21. Satyanarayanan M, Kistler JJ, Kumar P, Okasaki ME, Siegel EH, Steere DC. Coda: a highly available file system for a distributed workstation environment. IEEE Trans Comput. 1990;39(4):447–59.

    Article  Google Scholar 

  22. Schneider FB. Replication management using the state-machine approach. In: Mullender S, editor. Distributed systems. 2nd ed. Reading: Addison Wesley; 1993. p. 169–98.

    Google Scholar 

  23. Sivasubramanian S, Szymaniak M, Pierre G, van Steen M. Replication for web hosting systems. ACM Comput Surv. 2004;36(3):291–334.

    Article  Google Scholar 

  24. Sovran Y, Power R, Aguilera MK, Li J. Transactional storage for geo-replicated systems. In: Proceedings of the 23rd ACM Symposium on Operating System Principles; 2011. p. 385–400.

    Google Scholar 

  25. Terry DB, Theimer M, Petersen K, Demers AJ, Spreitzer M, Hauser C. Managing update conflicts in Bayou, a weakly connected replicated storage system. In: Proceedings of the 15th ACM Symposium on Operating System Principles; 1995. p. 172–83.

    Google Scholar 

  26. Wiesmann M, Schiper A. Comparison of database replication techniques based on total order broadcast. IEEE Trans Knowl Data Eng. 2005;17(4):551–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Kemme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kemme, B. (2018). Data Replication. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_110

Download citation

Publish with us

Policies and ethics