Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sound Localization in Mammals, Models

Encyclopedia of Computational Neuroscience
  • 389 Accesses

Definition

Models of sound localization for mammals describe or simulate the process of how the mammalian auditory system determines the position and/or spatial extent of one or multiple sound sources from cues it extracts from signals captured at the eardrums.

Detailed Description

Historical Overview

The first theories describing how the human auditory system can determine the position of a sound source appeared in the late nineteenth century after W. Thompson (1877), S. P. Thompson (1882), and Steinhauser (1877) discovered that interaural time and level differences occur between both ear signals if a sound source arrives from the side. The focus continued to be on so-called lateralization models, which explain how a sound source is perceived to the left or right based on interaural cues. The first model that describes an actual physiological mechanism of how the central nervous system localizes sound is the Jeffress model, which proposes a combination of delay lines and coincidence...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akeroyd MA, Summerfield Q (1999) A fully temporal account of the perception of dichotic pitches. Br J Audiol 33:106–107

    Google Scholar 

  • Barron M, Marshall AH (1981) Spatial impression due to early lateral reflections in concert halls: the derivation of a physical measure. J Sound Vib 77(2):211–232

    Article  Google Scholar 

  • Baumgartner R, Majdak P, Laback B (2013) Assessment of sagittal-plane sound-localization performance in spatial-audio applications. In: Blauert J (ed) The technology of binaural listening, chapter 4. Springer, Berlin/Heidelberg/New York, pp 93–119

    Chapter  Google Scholar 

  • Bernstein L, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026–1036

    Article  PubMed  Google Scholar 

  • Blauert J (1969/1970) Sound localization in the median plane. Acustica, 22:205–213

    Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization (2nd revised). MIT Press, Berlin/Heidelberg/New York

    Google Scholar 

  • Blauert J (1999) Spatial hearing (Revised edition). Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Blauert J, Cobben W (1978) Some consideration of binaural cross correlation analysis. Acustica 39:96–104

    Google Scholar 

  • Blauert J, Lindemann W (1986) Auditory spaciousness: some further psychoacoustic analysis. J Acoust Soc Am 80:533–542

    Article  CAS  Google Scholar 

  • Bodden M (1992) Binaurale Signalverarbeitung: Modellierung der Richtungserkennung und des Cocktail-Party-Effektes [Binaural signal processing: modelling the recognition of direction and the cocktail-party effect]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Bodden M (1993) Modeling human sound-source localization and the cocktail-party effect. Act Acust/Acustica 1:43–55

    Google Scholar 

  • Braasch J (2002) Localization in the presence of a distracter and reverberation in the frontal horizontal plane: II. Model algorithms. Act Acust/Acustica 88(6):956–969

    Google Scholar 

  • Braasch J (2003) Localization in the presence of a distracter and reverberation in the frontal horizontal plane: III. The role of interaural level differences. Act Acust/Acustica 89(4):674–692

    Google Scholar 

  • Braasch J (2005) Modeling of binaural hearing. In: Blauert J (ed) Communication acoustics. Springer Verlag, Berlin, pp 75–108

    Chapter  Google Scholar 

  • Braasch J, Blauert J (2011) Stimulus-dependent adaptation of inhibitory elements in precedence-effect models. In: Proceeding Forum Acusticum 2011. Aalborg, pp 2115–2120

    Google Scholar 

  • Braasch J, Clapp S, Parks A, Pastore T, Xiang N (2013) A Binaural Model that Analyses Acoustic Spaces and Stereophonic Reproduction Systems by Utilizing Head Rotations. In: Jens Blauert (ed) The Technology of Binaural Listening. Springer Berlin Heidelberg, pp 201–223

    Google Scholar 

  • Brungart D, Rabinowtz W (1999) Auditory localization of nearby sources. Head-related transfer functions. J Acoust Soc Am 106:1465–1479

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998a) A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. J Acoust Soc Am 103:475–493

    Article  CAS  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998b) A model for binaural response properties of inferior colliculus neurons. II. A model with interaural time difference-sensitive excitatory and inhibitory inputs and an adaptation mechanism. J Acoust Soc Am 103:494–506

    Article  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10(10):3227–3246

    CAS  PubMed  Google Scholar 

  • Cherry EC, Sayers BMA (1956) “Human ‘cross-correlator’” – a technique for measuring certain parameters of speech perception. J Acoust Soc Am 28(5):889–895

    Article  Google Scholar 

  • Colburn HS (1977) Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. J Acoust Soc Am 61:525–533

    Article  CAS  PubMed  Google Scholar 

  • Dietz M, Ewert SD, Hohmann V, Kollmeier B (2008) Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Res 1220:234–245

    Article  CAS  PubMed  Google Scholar 

  • Dietz M, Ewert SD, Hohmann V (2011) Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Commun 53(5):592–605

    Article  Google Scholar 

  • Dizon RM, Colburn HS (2006) The influence of spectral, temporal, and interaural stimulus variations on the precedence effect. J Acoust Soc Am 119:2947–2964

    Article  PubMed  Google Scholar 

  • Djelani T (2001) Psychoakustische Untersuchungen und Modellierungsansätze zur Aufbauphase des auditiven Prazedenzeffektes. Ph.D. thesis, Ruhr-Universität Bochum

    Google Scholar 

  • Duifhuis H (1972) Perceptual analysis of sound. Ph.D. thesis, Techn Hogeschool Eindhoven, Eindhoven

    Google Scholar 

  • Faller C, Merimaa J (2004) Source localization in complex listening situations: SELECTION of binaural cues based on interaural coherence. J Acoust Soc Am 116:3075–3089

    Article  PubMed  Google Scholar 

  • Freyman RL, Zurek PM, Balakrishnan U, Chiang YC (1997) Onset dominance in lateralization. J Acoust Soc Am 101:1649–1659

    Article  CAS  PubMed  Google Scholar 

  • Grantham DW (1979) Discrimination of dynamic inter-aural intensity differences. J Acoust Soc Am 76:71–76

    Article  Google Scholar 

  • Grantham DW (1982) Detectability of time-varying inter-aural correlation in narrow-band noise stimuli. J Acoust Soc Am 72:1178–1184

    Article  CAS  Google Scholar 

  • Grantham DW, Wightman FL (1978) Detectability of varying interaural temporal differences. J Acoust Soc Am 63:511–523

    Article  CAS  Google Scholar 

  • Grantham DW, Wightman FL (1979) Detectability of a pulsed tone in the presence of a masker with time-varying inter-aural correlation. J Acoust Soc Am 65:1509–1517

    Article  CAS  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012

    Article  CAS  PubMed  Google Scholar 

  • Hafter E (1997) Binaural adaptation and the effectiveness of a stimulus beyond its onset. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum, Mahwah, pp 211–232

    Google Scholar 

  • Hartung K (1998). Modellalgorithmen zum Richtungshören, basierend auf Ergebnissen psychoakustischer und neurophysiologischer Experimente mit virtuellen Schallquellen [Model algorithms regarding directional hearing, based on psychoacoustic and neurophysiological experiments with virtual sound sources]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli. J Acoust Soc Am 110:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Irons WA, Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high frequency auditory cortex. J Neurophysiol 63:1448–1466

    CAS  PubMed  Google Scholar 

  • Janko J, Anderson T, Gilkey R (1997) Using neural networks to evaluate the viability of monaural and inter-aural cues for sound localization. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum Associates, Mahwah, pp 557–570

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    Article  CAS  PubMed  Google Scholar 

  • Joris P (1996) Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. J Neurophysiol 76:2137–2156

    CAS  PubMed  Google Scholar 

  • Joris P, Yin T (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73:1043–1062

    CAS  PubMed  Google Scholar 

  • Kollmeier B, Gilkey RH (1990) Binaural forward and backward masking: evidence for sluggishness in binaural detection. J Acoust Soc Am 87:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Langendijk EHA, Bronkhorst AW (2002) Contribution of spectral cues to human sound localization. J Acoust Soc Am 112(4):1583–1596

    Article  PubMed  Google Scholar 

  • Lehn K (2000) Unscharfe zeitliche Clusteranalyse von monauralen und inter-auralen Merkmalen als Modell der auditiven Szenenanalyse [Fuzzy time-based cluster analysis of monaural and inter-aural cues as a model of auditory scene analysis]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Lindemann W (1986a) Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization of stationary signals. J Acoust Soc Am 80:1608–1622

    Article  CAS  PubMed  Google Scholar 

  • Lindemann W (1986b) Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wave front. J Acoust Soc Am 80:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D (2005) Creating a sense of auditory space. J Physiol 566(1):21–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localisation and delay lines – do mammals fit the model? Trend Neurosci 26:347–350

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401

    Article  CAS  PubMed  Google Scholar 

  • Meddis R, Hewitt MJ, Shakleton TM (1990) Implementation details of a computational model of the inner hair-cell auditory-nerve synapse. J Acoust Soc Am 87:1813–1816

    Article  Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound localization. J Neurophysiol 1:107–120

    CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  • Nix J, Hohmann V (2000) Robuste Lokalisation im Störgeräusch auf der Basis statistischer Referenzen. In: Fortschr Akust DAGA 2000, pp 474–475

    Google Scholar 

  • Nix J, Hohmann V (2006) Sound source localization in real sound fields based on empirical statistics of interaural parameters. J Acoust Soc Am 119:463–479

    Article  PubMed  Google Scholar 

  • Okano T, Beranek LL, Hidaka T (1998) Relations among interaural cross-correlation coefficient (IACC E ), lateral fraction (LF E ), and apparent source width (ASW) in concert halls. J Acoust Soc Am 104:255–265

    Article  CAS  Google Scholar 

  • Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28(27):6914–6925

    Article  CAS  PubMed  Google Scholar 

  • Pulkki V, Hirvonen T (2009) Functional count-comparison model for binaural decoding. Act Acust/Acustica 95(5):883–900

    Article  Google Scholar 

  • Raatgever J (1980) On the binaural processing of stimuli with different interaural phase relations. Ph.D. thesis, Delft University of Technology, Delft

    Google Scholar 

  • Rateitschek K (2000) Ein binauraler Signalverarbeitungsansatz zur robusten maschinellen Spracherkennung in lärmerfüllter Umgebung [A binaural signal processing approach to robust speech recognition in noisy environments]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Rayleigh L (1907) On our perception of sound direction. Phil Mag 13:214–232

    Article  Google Scholar 

  • Reed M, Blum J (1990) A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust Soc Am 88:1442–1453

    Article  CAS  PubMed  Google Scholar 

  • Roman N, Wang D (2008) Binaural tracking of multiple moving sources. IEEE Trans Audio Speech Lang Processing 16(4):728–739

    Article  Google Scholar 

  • Roman N, Srinivasan S, Wang D (2006) Binaural segregation in multisource reverberant environments. J Acoust Soc Am 120(6):4040–4051

    Article  PubMed  Google Scholar 

  • Sayers BM, Cherry EC (1957) Mechanism of binaural fusion in the hearing of speech. J Acoust Soc Am 29:973–987

    Article  Google Scholar 

  • Shackleton TM, Meddis R, Hewitt MJ (1992) Across frequency integration in a model of lateralization. J Acoust Soc Am 91:2276–2279

    Article  Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3(3):520–528

    Article  CAS  Google Scholar 

  • Steinhauser A (1877) The theory of binaural audition. Phil Mag 7(181–197):261–274

    Google Scholar 

  • Stern R, Colburn H (1978) Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J Acoust Soc Am 64:127–140

    Article  PubMed  Google Scholar 

  • Stern RM, Shear GD (1996) Lateralization and detection of low-frequency binaural stimuli: effects of distribution of internal delay. J Acoust Soc Am 100:2278–2288

    Article  Google Scholar 

  • Stern RM, Trahiotis C (1995) Models of binaural interaction. In: Moore BCJ (ed) Hearing. Academic Press, New York, pp 347–386

    Chapter  Google Scholar 

  • Stern RM, Zeiberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84:156–165

    Article  CAS  PubMed  Google Scholar 

  • Stern R, Wang D, Brown G (2006) Binaural sound localization. In: Wang D, Brown G (eds) Computational auditory scene analysis. Wiley Interscience, Hoboken, pp 147–186

    Google Scholar 

  • Thompson SP (1877) On binaural audition. Phil Mag 4:274–276

    Article  Google Scholar 

  • Thompson SP (1882) On the function of the two ears in the perception of space. Phil Mag 13:406–416

    Article  Google Scholar 

  • Wolf S (1991) Untersuchungen zur Lokalisation von Schallquellen in geschlossenen Räumen. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Zakarauskas P, Cynader M (1993) A computational theory of spectral cue localization. J Acoust Soc Am 94:1323–1331

    Article  Google Scholar 

  • Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds) Directional hearing. Springer, New York, pp 85–105

    Chapter  Google Scholar 

  • Zurek PM (1993) A note on onset effects in binaural hearing. J Acoust Soc Am 93:1200–1201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Braasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Braasch, J. (2014). Sound Localization in Mammals, Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_436-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_436-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sound Localization in Mammals and Models
    Published:
    04 February 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_436-2

  2. Original

    Sound Localization in Mammals, Models
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_436-1