Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interaction-Based Simulations for Integrative Spatial Systems Biology

  • Chapter
  • First Online:
Understanding the Dynamics of Biological Systems

Abstract

Systems biology aims at integrating processes at various time and spatial scales into a single and coherent formal description to allow analysis and computer simulation. In this context, we focus on rule-based modeling and its integration in the domain-specific language MGS. Through the notions of topological collections and transformations, MGS allows the modeling of biological processes at various levels of description. We validate our approach through the description of various models of a synthetic bacteria designed in the context of the International Genetically Engineered Machine Competition, from a very simple biochemical description of the process to an individual-based model on a Delaunay graph topology. This approach is a first step into providing the requirements for the emerging field of spatial systems biology which integrates spatial properties into systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The SMB: Synthetic Multicellular Bacterium (iGEM’07) Paris Team Web site: http://parts.mit.edu/igem07/index.php/Paris.

  2. 2.

    Relying on a mean-field approach where the idea is to replace all interactions to any entity with an average interaction, reducing any multiple entities problem into an effective one-entity problem.

  3. 3.

    Bailly and Longo (2006) recognize the importance of this class of dynamical systems and call it “dynamicité auto-constituante” (which could be translated to “self-producing dynamicity”), a distinctive feature of living organisms.

  4. 4.

    The Website of the project is http://mgs.spatial-computing.org.

  5. 5.

    The BioBricks are available in the Registry of Standard Biological Parts at the following Web site http://partsregistry.org/Main_Page.

  6. 6.

    Evaluating the stochastic constants is one of the key issues in stochastic simulations of biochemical reactions. The interested reader should refer to De Cock et al. (2003) and Zhang et al. (2003) for the description of two experiences in that field.

  7. 7.

    The third dimension is not considered as the SMBis supposed to grow in the plane of a Petri dish, for example.

  8. 8.

    The whole MGSprogram of the simulation is available at http://mgs.spatial-computing.org/integrative_biology.tgz.

References

  1. F. Aurenhammer. Voronoi diagrams–A survey of a fundamental geometric data structure. ACM Comput Surv, 23 (3): 345–405, 1991

    Article  Google Scholar 

  2. F. Bailly and G. Longo. Mathmatiques et sciences de la nature. Hermann, Paris, 2006

    Google Scholar 

  3. J.-P. Banâtre and D. LeMetayer. Programming by multiset transformation. Comm ACM, 36 (1): 98, 1993

    Google Scholar 

  4. J.-P. Banâtre, P. Fradet, and Y. Radenac. Generalised multisets for chemical programming. Math Struct Comput Sci, 16 (4): 557–580, 2006

    Article  Google Scholar 

  5. P. Barbier de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin, N. Carraro, C. Godin, and J. Traas. Computer simulations reveal novel properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sc USA, 103 (5): 1627–1632, 2006a

    Article  CAS  Google Scholar 

  6. K. De Cock, X. Zhang, M. F. Bugallo, and P. M. Djuric. Stochastic simulation and parameter estimation of first order chemical reactions. In 12th European Signal Processing Conference (EUSIPCO’04), 2003

    Google Scholar 

  7. R. Durrett and S. Levin. The importance of being discrete (and spatial). Theor Popul Biol, 46 (3): 363–394, 1994

    Article  Google Scholar 

  8. M. Eden. A two-dimensional growth process. In Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, Vol. 4, pages 223–239, 1961

    Google Scholar 

  9. M. Eigen and P. Schuster. The hypercycle: A principle of natural self-organization. Springer, Berlin, 1979

    Google Scholar 

  10. D. Endy. Foundations for engineering biology. Nature, 438: 449–453, 2005

    Article  PubMed  CAS  Google Scholar 

  11. E. Fermi, J. Pasta, and S. Ulam. Studies of nonlinear problems, LASL Report LA-1940 (5). Technical report, 1965. Reprinted in the collected work of E. Fermi, Vol. 2, pp. 977–988, 1965

    Google Scholar 

  12. M. Fisher, G. Malcolm, and R. Paton. Spatio-logical processes in intracellular signalling. BioSystems, 55: 83–92, 2000

    Article  PubMed  CAS  Google Scholar 

  13. W. Fontana. Algorithmic chemistry. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Proceedings of the Workshop on Artificial Life (ALIFE’90), Vol. 5, pages 159–210, 1992

    Google Scholar 

  14. W. Fontana and L. W. Buss. “The arrival of the fittest”: Toward a theory of biological organization. Bull Math Biol, 1994

    Google Scholar 

  15. J.-L. Giavitto. Topological collections, transformations and their application to the modeling and the simulation of dynamical systems. In Rewriting Techniques and Applications (RTA’03), LNCS 2706, pages 208–233, 2003

    Google Scholar 

  16. J.-L. Giavitto and O. Michel. Declarative definition of group indexed data structures and approximation of their domains. In Proceedings of the 3rd ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP’01), pages 150–161, 2001

    Google Scholar 

  17. J.-L. Giavitto and O. Michel. Data structure as topological spaces. In Proceedings of the 3nd International Conference on Unconventional Models of Computation UMC’02, Vol. LNCS 2509, pages 137–150, 2002a

    Google Scholar 

  18. J.-L. Giavitto and O. Michel. Pattern-matching and rewriting rules for group indexed data structures. ACM SIGPLAN Not, 37 (12): 76–87, 2002b

    Article  Google Scholar 

  19. J.-L. Giavitto and O. Michel. The topological structures of membrane computing. Fundam Inform, 49: 107–129, 2002c

    Google Scholar 

  20. J.-L. Giavitto and O. Michel. Modeling the topological organization of cellular processes. BioSystems, 70 (2): 149–163, 2003

    Article  PubMed  CAS  Google Scholar 

  21. J.-L. Giavitto and A. Spicher. Simulation of self-assembly processes using abstract reduction systems. In Systems self-assembly: Sultidisciplinary snapshots, pages 199–223. Elsevier, 2008a

    Google Scholar 

  22. J.-L. Giavitto and A. Spicher. Topological rewriting and the geometrization of programming. Physica D, 237: 1302–1314, 2008b

    Article  Google Scholar 

  23. J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Modelling and simulation of biological processes in the context of genomics. In Computational Models for Integrative and Developmental Biology, 2002a

    Google Scholar 

  24. J.-L. Giavitto, O. Michel, and J. Cohen. Pattern-matching and rewriting rules for group indexed data structures. In ACM Sigplan Workshop (RULE’02), pages 55–66, 2002b

    Google Scholar 

  25. J.-L. Giavitto, G. Malcolm, and O. Michel. Rewriting systems and the modelling of biological systems. Comp Funct Genomics, 5: 95–99, 2004

    Article  PubMed  CAS  Google Scholar 

  26. M. C. Gibson, A. B. Patel, R. Nagpal, and N. Perrimon. The emergence of geometric order in proliferating metazoan epithelia. Nature, 442: 1038–1041, 2006

    Article  PubMed  CAS  Google Scholar 

  27. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J Phys Chem, 81 (25): 2340–2361, 1977

    Article  CAS  Google Scholar 

  28. J. Greenberg and S. Hastings. Spatial patterns for discrete models of diffusion in excitable media. SIAM J Appl Math, pages 515–523, 1978

    Google Scholar 

  29. Y. Itkis. Control systems of variable structure. Wiley, New York, 1976

    Google Scholar 

  30. P. Jansson and J. Jeuring. PolyP – A polytypic programming language extension. In Principles of programming languages, pages 470–482. ACM, 1997

    Google Scholar 

  31. T. Knight. Idempotent vector design for standard assembly of biobricks, 2006. MIT Synthetic Biology Working Group

    Google Scholar 

  32. A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. J Theor Biol, 18: 280–315, 1968a

    Article  PubMed  CAS  Google Scholar 

  33. P. L. Luisi. Autopoiesis: A review and a reappraisal. Naturwissenschaften, 90: 49–59, 2003

    PubMed  CAS  Google Scholar 

  34. J. Lynch. Logical characterization of individual-based models. In 23rd Annual IEEE Symposium on Logic in Computer Science (LICS’08), volume n, pages 379–390, 2008

    Google Scholar 

  35. H. McAdams and L. Shapiro. Circuit simulation of genetic networks. Science, 269 (5224): 650, 1995

    Google Scholar 

  36. O. Michel, A. Spicher, and J.-L Giavitto. Rule-based programming for integrative biological modeling – Application to the modeling of the λ phage genetic switch. Nat Comput, 8 (4): 865–889, 2009

    Google Scholar 

  37. J. Munkres. Elements of algebraic topology. Addison-Wesley, Reading, MA, 1984

    Google Scholar 

  38. G. Păun. From cells to computers: Computing with membranes (P systems). Biosystems, 59 (3): 139–158, 2001

    Article  PubMed  Google Scholar 

  39. N.M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon. The importance of being discrete: Life always wins on the surface. PNAS, 97 (19): 10322–10324, 2000

    Article  PubMed  CAS  Google Scholar 

  40. J. Smith. Shaping life: Genes, embryos and evolution. Yale University Press, New Haven, 1999

    Google Scholar 

  41. A. Spicher and O. Michel. Using rewriting techniques in the simulation of dynamical systems: Application to the modeling of sperm crawling. In Fifth International Conference on Computational Science (ICCS’05), Part I’, Vol. 3514 of LNCS, pages 820–827, 2005

    Google Scholar 

  42. A. Spicher and O. Michel. Declarative modeling of a neurulation-like process. BioSystems, 87 (2–3): 281–288, 2007.

    Article  PubMed  Google Scholar 

  43. A. Spicher, N. Fats, and O. Simonin. From reactive multi-agents models to cellular automata. In International Conference on Agents and Artificial Intelligence, pages 422–429, 2009

    Google Scholar 

  44. A.M. Turing. The chemical basis of morphogenesis, Series B: Biological Sciences. Phil Trans R Soc Lond, 237: 37–72, 1952

    Article  Google Scholar 

  45. G. Turk. Generating textures for arbitrary surfaces using reaction-diffusion. In T.W. Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), pages 289–298, 1991

    Google Scholar 

  46. F.J. Varela, H.R. Maturana, and R. Uribe. Autopoiesis: The organization of living systems, its characterization and a model. BioSystems, 5: 187–196, 1974

    Article  CAS  Google Scholar 

  47. G. Von Dassow, E. Meir, E. M. Munro, and G. Odell. The segment polarity network is a robust developmental module. Nature, 406 (6792): 188–192, 2000

    Article  Google Scholar 

  48. J. Von Neumann. Theory of self-reproducing automata. University of Illinois Press, Urbana, 1966

    Google Scholar 

  49. S. Wolfram. Theory and applications of cellular automata. World Scientific Publication, Singapore, 1986

    Google Scholar 

  50. M. Woolridge and M. Wooldridge. Introduction to multiagent systems. Wiley, New York, 2001

    Google Scholar 

  51. X. Zhang, K. De Cock, M.F. Bugallo, and P.M. Djuric. Stochastic simulation and parameter estimation of enzyme reaction models. In IEEE Workshop on Statistical Signal Processing, 2003

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments on a first version of this chapter.

We gratefully acknowledge all the people who contributed to make the first French participation in iGEM in 2007 a success: the students, D. Bikard, F. Caffin, N. Chiaruttini, T. Clozel, D. Guegan, T. Landrain, D. Puyraimond, A. Rizk, E. Shotar, G. Vieira, the instructors, F. Delaplace, S. Bottani, A. Jaramillo, A. Lindner, V. Schächter; the advisors, F. Le Fevre, M. Suarez, S. Smidtas, A. Spicher, and P. Tortosa.

Further acknowledgments are also due to J. Cohen, B. Calvez, F. Thonnerieux, C. Kodrnja, and F. Letierce who have contributed in various ways to the MGSproject.

This research is supported in part by the the University of Évry, the University of Paris-Est, the CNRS, GENOPOLE-Évry, the Institute for Complex Systems in Paris-Ile de France, the ANR white project AutoChem and the French working group GDR GPL/LTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Spicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spicher, A., Michel, O., Giavitto, JL. (2011). Interaction-Based Simulations for Integrative Spatial Systems Biology. In: Dubitzky, W., Southgate, J., Fuß, H. (eds) Understanding the Dynamics of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7964-3_10

Download citation

Publish with us

Policies and ethics