Abstract
Mining structured information has been the source of much research in the data mining community over the last decade. The field of bioinformatics has emerged as important application area in this context. Examples abound ranging from the analysis of protein interaction networks to the analysis of phylogenetic data. In this article we survey the principal results in the field examining them both from the algorithmic contributions and applicability in the domain in ques- tion. We conclude this article with a discussion of the key results and identify some interesting directions for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akutsu, T. (1992). An RNC algorithm for finding a largest common subtree of two trees. IEICE Transactions on Information and Systems, 75(1):95–101.
Aoki, K., Mamitsuka, H., Akutsu, T., and Kanehisa, M. (2005). A score matrix to reveal the hidden links in glycans. Bioinformatics, 21(8):1457–1463.
Aoki, K., Ueda, N., Yamaguchi, A., Kanehisa, M., Akutsu, T., and Mamitsuka, H. (2004a). Application of a new probabilistic model for recognizing complex patterns in glycans.
Aoki, K., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., and Mamitsuka, H. (2003). Efficient tree-matching methods for accurate carbohydrate database queries. Genome Informatics Sl, pages 134–143.
Aoki, K., Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., and Kanehisa, M. (2004b). KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic acids research, 32(Web Server Issue):W267.
Asur, S., Ucar, D., and Parthasarathy, S. (2007). An ensemble framework for clustering protein protein interaction networks. Bioinformatics, 23(13):i29.
Avogadri, R. and Valentini, G. (2009). Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine, 45(2–3):173–183.
Bader, G. and Hogue, C. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinfomatics, 4:2.
Bafna, V., Muthukrishnan, S., and Ravi, R. (1995). Computing similarity between RNA strings. In Combinatorial Pattern Matching (CPM), volume 937 of LNCS.
Bar-Joseph, Z., Gerber, G., Lee, T., Rinaldi, N., Yoo, J., Robert, F., Gordon, D., Fraenkel, E., Jaakkola, T., Young, R., et al. (2003). Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 21(11):1337–1342.
Benedetti, G. and Morosetti, S. (1996). A graph-topological approach to recognition of pattern and similarity in RNA secondary structures. Biophysical chemistry, 59(1–2):179–184.
Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical computer science, 337(1–3):217–239.
Bohne-Lang, A., Lang, E., Forster, T., and von der Lieth, C. (2001). LIN-UCS: linear notation for unique description of carbohydrate sequences. Carbohydrate research, 336(1):1–11.
Brohee, S. and van Helden, J. (2006). Evaluation of clustering algorithms for protein-protein interaction networks. BMC bioinformatics, 7(1):488.
Butte, A. and Kohane, I. (2000). Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In Pac Symp Biocomput, volume 5, pages 418–429.
Chakrabarti, D. and Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM Computing Surveys (CSUR), 38(1).
Chawathe, S. and Garcia-Molina, H. (1997). Meaningful change detection in structured data. ACM SIGMOD Record, 26(2):26–37.
Chawathe, S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996). Change detection in hierarchically structured information. In Proceedings of the 1996 ACM SIGMOD international conference on Management of data, pages 493–504. ACM New York, NY, USA.
Chen, J., Hsu, W., Lee, M., and Ng, S. (2006). NeMoFinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 106–115. ACM New York, NY, USA.
Chen, J., Hsu, W., Lee, M. L., and Ng, S.-K. (2007). Labeling network motifs in protein interactomes for protein function prediction. Data Engineering, International Conference on, 0:546–555.
Cheng, Y. and Church, G. (2000). Biclustering of expression data. In Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology table of contents, pages 93–103. AAAI Press.
Chua, H., Ning, K., Sung, W., Leong, H., and Wong, L. (2007). Using indirect protein-protein interactions for protein complex prediction. In Computational Systems Bioinformatics: Proceedings of the CSB 2007 Conference, page 97. Imperial College Press.
Coatney, M. and Parthasarathy, S. (2005a). MotifMiner: Efficient discovery of common substructures in biochemical molecules. Knowledge and Information Systems, 7(2):202–223.
Coatney, M. and Parthasarathy, S. (2005b). Motifminer: Efficient discovery of common substructures in biochemical molecules. Knowl. Inf. Syst., 7(2):202–223.
Constantinescu, M. and Sankoff, D. (1995). An efficient algorithm for supertrees. Journal of Classification, 12(1):101–112.
Cooper, C., Harrison, M., Wilkins, M., and Packer, N. (2001). GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources. Nucleic Acids Research, 29(1):332.
Dhillon, I., Guan, Y., and Kulis, B. (2005). A fast kernel-based multilevel algorithm for graph clustering. Proceedings of the 11th ACM SIGKDD, pages 629–634.
Dongen, S. (2000). Graph clustering by flow simulation. PhD thesis, PhD Thesis, University of Utrecht, The Netherlands.
Durocher, D., Taylor, I., Sarbassova, D., Haire, L., Westcott, S., Jackson, S., Smerdon, S., and Yaffe, M. (2000). The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Molecular Cell, 6(5):1169–1182.
Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25):14863–14868.
Farach, M. and Thorup, M. (1994). Fast comparison of evolutionary trees. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms, pages 481–488. Society for Industrial and Applied Mathematics Philadelphia, PA, USA.
Fitch, W. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. Systematic zoology, 20(4):406–416.
Furtig, B., Richter, C., Wohnert, J., and Schwalbe, H. (2003). NMR spectroscopy of RNA. ChemBioChem, 4(10):936–962.
Gan, H., Pasquali, S., and Schlick, T. (2003). Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucleic acids research, 31(11):2926.
Gardner, P. and Giegerich, R. (2004). A comprehensive comparison of comparative RNA structure prediction approaches. BMC bioinformatics, 5(1):140.
Gordon, A. (1979). A measure of the agreement between rankings. Biometrika, 66(1):7–15.
Gordon, A. (1986). Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification, 3(2):335–348.
Gouda, K. and Zaki, M. (2001). Efficiently mining maximal frequent itemsets. In Proceedings of the 2001 IEEE International Conference on Data Mining, pages 163–170.
Grochow, J. and Kellis, M. (2007). Network motif discovery using subgraph enumeration and symmetry-breaking. Lecture Notes in Computer Science, 4453:92.
Guignon, V., Chauve, C., and Hamel, S. (2005). An edit distance between RNA stem-loops. Lecture notes in computer science, 3772:333.
Gupta, A. and Nishimura, N. (1998). Finding largest subtrees and smallest supertrees. Algorithmica, 21(2):183–210.
Hadzic, F., Dillon, T., Sidhu, A., Chang, E., and Tan, H. (2006). Mining substructures in protein data. In IEEE ICDM 2006 Workshop on Data Mining in Bioinformatics (DMB 2006), pages 18–22.
Hartuv, E. and Shamir, R. (2000). A clustering algorithm based on graph connectivity. Information processing letters, 76(4–6):175–181.
Hashimoto, K., Aoki-Kinoshita, K., Ueda, N., Kanehisa, M., and Mamitsuka, H. (2006a). A new efficient probabilistic model for mining labeled ordered trees. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 177–186.
Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K., Ueda, N., Hamajima, M., Kawasaki, T., and Kanehisa, M. (2006b). KEGG as a glycome informatics resource. Glycobiology, 16(5):63–70.
Hashimoto, K., Takigawa, I., Shiga, M., Kanehisa, M., and Mamitsuka, H. (2008). Mining significant tree patterns in carbohydrate sugar chains. Bioinformatics, 24(16):i167.
Henikoff, S. and Henikoff, J. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919.
Herget, S., Ranzinger, R., Maass, K., and Lieth, C. (2008). GlycoCT: a unifying sequence format for carbohydrates. Carbohydrate Research, 343(12):2162–2171.
Hizukuri, Y., Yamanishi, Y., Nakamura, O., Yagi, F., Goto, S., and Kanehisa, M. (2005). Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydrate research, 340(14):2270–2278.
Hochsmann, M., Voss, B., and Giegerich, R. (2004). Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 1(1):53–62.
Holder, L., Cook, D., and Djoko, S. (1994). Substructure discovery in the subdue system. In Proc. of the AAAI Workshop on Knowledge Discovery in Databases, pages 169–180.
Horvath, S. and Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology, 4(8).
Hu, H., Yan, X., Huang, Y., Han, J., and Zhou, X. (2005). Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 21(1):213–221.
Huan, J., Wang, W., Prins, J., and Yang, J. (2004). Spin: mining maximal frequent subgraphs from graph databases. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 581–586. ACM New York, NY, USA.
Huang, Y., Li, H., Hu, H., Yan, X., Waterman, M., Huang, H., and Zhou, X. (2007). Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics, 23(13):i222.
Jiang, T., Lawler, E., and Wang, L. (1994). Aligning sequences via an evolutionary tree: complexity and approximation. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages 760–769. ACM New York, NY, USA.
Jiang, T., Lin, G., Ma, B., and Zhang, K. (2002). A general edit distance between RNA structures. Journal of Computational Biology, 9(2):371–388.
Jiang, T., Wang, L., and Zhang, K. (1995). Alignment of trees: an alternative to tree edit. Theoretical Computer Science, 143(1):137–148.
Jin, R., Wang, C., Polshakov, D., Parthasarathy, S., and Agrawal, G. (2005). Discovering frequent topological structures from graph datasets. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 606–611. ACM New York, NY, USA.
Karypis, G. and Kumar, V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359.
Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–1758.
Kawano, S., Hashimoto, K., Miyama, T., Goto, S., and Kanehisa, M. (2005). Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics, 21(21):3976–3982.
Keselman, D. and Amir, A. (1994). Maximum agreement subtree in a set of evolutionary trees-metrics and efficient algorithms. In Annual Symposium on Foundations of Computer Science, volume 35, pages 758–758. IEEE Computer Society Press.
Khanna, S., Motwani, R., and Yao, F. (1995). Approximation algorithms for the largest common subtree problem.
Kohonen, T. (1995). Self-organizing maps. Springer, Berlin.
Koyuturk, M., Grama, A., and Szpankowski, W. (2004a). An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics, 20(90001).
Koyuturk, M., Szpankowski, W., and Grama, A. (2004b). Biclustering gene-feature matrices for statistically significant dense patterns. In 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings, pages 480–484.
Kuboyama, T., Hirata, K., Aoki-Kinoshita, K., Kashima, H., and Yasuda, H. (2006). A gram distribution kernel applied to glycan classification and motif extraction. Genome Informatics Series, 17(2):25.
Le, S., Owens, J., Nussinov, R., Chen, J., Shapiro, B., and Maizel, J. (1989). RNA secondary structures: comparison and determination of frequently recurring substructures by consensus. Bioinformatics, 5(3):205–210.
Lee, H., Hsu, A., Sajdak, J., Qin, J., and Pavlidis, P. (2004). Coexpression analysis of human genes across many microarray data sets. Genome Research, 14(6):1085–1094.
Lemmens, K., Dhollander, T., De Bie, T., Monsieurs, P., Engelen, K., Smets, B., Winderickx, J., De Moor, B., and Marchal, K. (2006). Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome biology, 7(5):R37.
Li, H., Marsolo, K., Parthasarathy, S., and Polshakov, D. (2004). A new approach to protein structure mining and alignment. Proceedings of the ACM SIGKDD Workshop on Data Mining and Bioinformatics (BIOKDD), pages 1–10.
Li, X., Foo, C., and Ng, S. (2007). Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. In Computational Systems Bioinformatics: Proceedings of the CSB 2007 Conference, page 157. Imperial College Press.
Liu, N. and Wang, T. (2006). A method for rapid similarity analysis of RNA secondary structures. BMC bioinformatics, 7(1):493.
Loß, A., Bunsmann, P., Bohne, A., Loß, A., Schwarzer, E., Lang, E., and Von der Lieth, C. (2002). SWEET-DB: an attempt to create annotated data collections for carbohydrates. Nucleic acids research, 30(1):405–408.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297.
Margush, T. and McMorris, F. (1981). Consensusn-trees. Bulletin of Mathematical Biology, 43(2):239–244.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827.
Mitchell, J., Cheng, J., and Collins, K. (1999). A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3’end. Molecular and cellular biology, 19(1):567–576.
Newman, M. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69:026113.
Ohtsubo, K. and Marth, J. (2006). Glycosylation in cellular mechanisms of health and disease. Cell, 126(5):855–867.
Onoa, B. and Tinoco, I. (2004). RNA folding and unfolding. Current Opinion in Structural Biology, 14(3):374–379.
Packer, N., von der Lieth, C., Aoki-Kinoshita, K., Lebrilla, C., Paulson, J., Raman, R., Rudd, P., Sasisekharan, R., Taniguchi, N., and York, W. (2008). Frontiers in glycomics: Bioinformatics and biomarkers in disease. Proteomics, 8(1).
Pizzuti, C. and Rombo, S. (2008). Multi-functional protein clustering in ppi networks. In Bioinformatics Research and Development, pages 318–330.
Ragan, M. (1992). Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution, 1(1):53.
Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., and Barabasi, A. (2002). Hierarchical organization of modularity in metabolic networks.
Sahoo, S., Thomas, C., Sheth, A., Henson, C., and York, W. (2005). GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydrate research, 340(18):2802–2807.
Sanderson, M., Purvis, A., and Henze, C. (1998). Phylogenetic supertrees: assembling the trees of life. Trends in Ecology & Evolution, 13(3):105–109.
Satuluri, V. and Parthasarathy, S. (2009). Scalable Graph Clustering using Stochastic Flows: Applications to Community Discovery. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 737–746.
Scholkopf, B. and Smola, A. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press.
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., and Friedman, N. (2003). Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature genetics, 34(2):166–176.
Selkow, S. (1977). The tree-to-tree editing problem. Information processing letters, 6(6):184–186.
Shapiro, B. and Zhang, K. (1990). Comparing multiple RNA secondary structures using tree comparisons. Bioinformatics, 6(4):309–318.
Sharan, R. and Shamir, R. (2000). CLICK: A clustering algorithm with applications to gene expression analysis. 8:307–316.
Shasha, D., Wang, J., and Zhang, S. (2004). Unordered tree mining with applications to phylogeny. In in Proceedings of International Conference on Data Engineering, pages 708–719.
Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–905.
Shih, F. and Mitchell, O. (1989). Threshold decomposition of gray-scale morphology into binarymorphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1):31–42.
Smith, T. and Waterman, M. (1981). Identification of common molecular subsequences. J. Mol. Bwl, 147:195–197.
Sneath, S. (1973). Hierarchical clustering.
Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for interaction datasets. Nucleic acids research, 34(Database Issue):D535.
Stockham, C., Wang, L., and Warnow, T. (2002). Statistically based postprocessing of phylogenetic analysis by clustering. Bioinformatics, 18(3):465–469.
Stuart, J., Segal, E., Koller, D., and Kim, S. (2003a). A gene-coexpression network for global discovery of conserved genetic modules. Science, 302(5643):249–255.
Stuart, J., Segal, E., Koller, D., and Kim, S. (2003b). A gene-coexpression network for global discovery of conserved genetic modules. Science, 302(5643):249–255.
Tai, K. (1979). The tree-to-tree correction problem. Journal of the Association for Computing Machm© ry, 26(3):422–433.
Tanay, A., Sharan, R., Kupiec, M., and Shamir, R. (2004). Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences, 101(9):2981–2986.
Tanay, A., Sharan, R., and Shamir, R. (2002). Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(Suppl 1):S136–S144.
Tinoco, I. and Bustamante, C. (1999). How RNA folds. Journal of molecular biology, 293(2):271–281.
Ueda, N., Aoki, K., and Mamitsuka, H. (2004). A general probabilistic framework for mining labeled ordered trees. In Proceedings of the Fourth SIAM International Conference on Data Mining, pages 357–368.
Ueda, N., Aoki-Kinoshita, K., Yamaguchi, A., Akutsu, T., and Mamitsuka, H. (2005). A probabilistic model for mining labeled ordered trees: Capturing patterns in carbohydrate sugar chains. IEEE Transactions on Knowledge and Data Engineering, 17(8):1051–1064.
Valiente, G. (2002). Algorithms on trees and graphs. Springer.
Wang, C. and Parthasarathy, S. (2004). Parallel algorithms for mining frequent structural motifs in scientific data. In Proceedings of the 18th annual international conference on Supercomputing, pages 31–40. ACM New York, NY, USA.
Wang, L., Jiang, T., and Gusfield, D. (1997). A more efficient approximation scheme for tree alignment. In Proceedings of the first annual international conference on Computational molecular biology, pages 310–319. ACM New York, NY, USA.
Wang, L., Jiang, T., and Lawler, E. (1996). Approximation algorithms for tree alignment with a given phylogeny. Algorithmica, 16(3):302–315.
Yamanishi, Y., Bach, F., and Vert, J. (2007). Glycan classification with tree kernels. Bioinformatics, 23(10):1211.
Yan, X., Mehan, M., Huang, Y., Waterman, M., Yu, P., and Zhou, X. (2007). A graph-based approach to systematically reconstruct human tran-scriptional regulatory modules. Bioinformatics, 23(13):i577.
You, C. H., Holder, L. B., and Cook, D. J. (2006). Application of graph-based data mining to metabolic pathways. Data Mining Workshops, International Conference on, 0:169–173.
Zaki, M. (2005). Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering, 17(8):1021–1035.
Zhang, K. and Jiang, T. (1994). Some MAX SNP-hard results concerning unordered labeled trees. Information Processing Letters, 49(5):249–254.
Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and related problems. SIAM journal on computing, 18:1245.
Zhang, S. and Wang, T. (2008). Discovering Frequent Agreement Subtrees from Phylogenetic Data. IEEE Transactions on Knowledge and Data Engineering, 20(1):68–82.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag US
About this chapter
Cite this chapter
Parthasarathy, S., Tatikonda, S., Ucar, D. (2010). A Survey of Graph Mining Techniques for Biological Datasets. In: Aggarwal, C., Wang, H. (eds) Managing and Mining Graph Data. Advances in Database Systems, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6045-0_18
Download citation
DOI: https://doi.org/10.1007/978-1-4419-6045-0_18
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-6044-3
Online ISBN: 978-1-4419-6045-0
eBook Packages: Computer ScienceComputer Science (R0)