Abstract
Our current research focuses on the investigation of new algorithmic paradigms for the data-driven generation of sensory feedback. The key notion is the collection of all relevant data characterizing an object as well as the interaction during a recording stage via multimodal sensing suites. The recorded data are then processed in order to convert the raw signals into abstract descriptors. This abstraction then also enables us to provide feedback for interaction which has not been observed before. We have developed a first integrated prototype implementation of the envisioned data-driven visuo-haptic acquisition and rendering system. It allows users to acquire the geometry and appearance of an object. In this chapter we outline the individual components and provide details on necessary extensions to also accommodate interaction scenarios involving deformable objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hoever, R., Harders, M., Szekely, G.: Data-driven haptic rendering of visco-elastic effects. In: IEEE Haptic Symposium, pp. 201–208 (2008)
Hoever, R., Kosa, G., Szekely, G., Harders, M.: Data-driven haptic rendering-from viscous fluids to visco-elastic solids. IEEE Trans. Haptics 2, 15–27 (2009)
Hoever, R., Di Luca, M., Szekely, G., Harders, M.: Computationally efficient techniques for data-driven haptic rendering. In: World Haptics, pp. 39–44 (2009)
Weise, T., Leibe, B., Van Gool, L.: Fast 3D scanning with automatic motion compensation. In: CVPR07, pp. 1–8 (2007)
Weise, T., Wismer, T., Leibe, B., Van Gool, L.: In-hand scanning with online loop closure. In: IEEE International Workshop on 3-D Digital Imaging and Modeling (2009)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)
Scharstein, D., Szeliski, R.: http://vision.middlebury.edu/stereo/
Klaus, A., Sormann, M., Karner, K.F.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR, pp. 15–18 (2006)
Blais, F.: Review of 20 years of range sensor development. In: Videometric VII, Proceedings of SPIE Electronic Imaging, vol. 5013, pp. 62–76 (2003)
Lange, R., Seitz, P., Biber, A., Schwarte, R.: Time-of-flight range imaging with a custom solid state image sensor. Laser Metrol. Inspect. 3823(1), 180–191 (1999)
Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: A survey. Pattern Recognit. 31(7), 963–982 (1998)
Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37(4), 827–849 (2004)
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Comput. Vis. Pattern Recognit. 01, 195–202 (2003)
Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection. Mach. Vis. Appl. V4(3), 193–203 (1991)
Zhang, L., Curless, B., Seitz, S.M.: Spacetime stereo: Shape recovery for dynamic scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 367–374 (2003)
Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 296–302 (2005)
Koninckx, T.P., Griesser, A., Van Gool, L.J.: Real-time range scanning of deformable surfaces by adaptively coded structured light. In: 3DIM, pp. 293–301 (2003)
Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 24–36 (2002)
MacLean, K.: The ‘haptic camera’: A technique for characterizing and playing back haptic properties of real environments. In: Proc. of ASME Dynamic Systems and Control Devision, vol. 58, pp. 459–467 (1996)
Greenish, S., Hayward, V., Steffen, T., Chial, V., Okamura, A.: Measurement, analysis, and display of haptic signals during surgical cutting. Presence 11, 626–651 (2002)
Okamura, A., Webster, R., Nolin, J., Johnson, K., Jafry, H.: The haptic scissors: Cutting in virtual environments. In: Proc. of the ICRA, vol. 1, pp. 828–833 (2003)
Edmunds, T., Pai, D.K.: Perceptual rendering for learning haptic skills. In: IEEE Haptic Symposium, pp. 225–230 (2008)
Colton, M., Hollerbach, J.: Reality-based haptic force models of buttons and switches. In: Proc. of the ICRA, pp. 497–502 (2007)
Colton, M., Hollerbach, J.: Haptic models of an automotive turn-signal switch: Identification and playback results. In: Proc. of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 243–248 (2007)
Kry, P., Pai, D.: Interaction capture and synthesis. ACM Trans. Graph. 25, 872–880 (2006)
Andrews, S., Lang, J.: Interactive scanning of haptic textures and surface compliance. In: Proc. of the International Conference on 3-D Digital Imaging and Modeling, pp. 99–106 (2007)
Pai, D.K., Rizun, P.: The WHaT: a wireless haptic texture sensor. In: IEEE Haptic Symposium, pp. 3–9 (2003)
Richard, C., Cutkosky, M., MacLean, K.: Friction identification for haptic display. In: Proc. of the ASME Dynamic Systems and Control Division, vol. 67, pp. 327–334 (1999)
Kuchenbecker, K., Fiene, J., Niemeyer, G.: Event-based haptics and acceleration matching: Portraying and assessing the realism of contact. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 381–387 (2005)
Kuchenbecker, K., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. In: IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 219–230 (2006)
Pai, D., Lang, J., Lloyd, J., Woodham, R.: ACME, a telerobotic active measurement facility. In: Experimental Robotics VI, vol. 250, pp. 391–400 (2000)
Pai, D., van den Doel, K., James, D., Lang, J., Lloyd, J., Richmond, J., Yau, S.: Scanning physical interaction behavior of 3D objects. In: ACM SIGGRAPH 2001 Conference Proc., pp. 87–96 (2001)
Sedef, M., Samur, E., Basdogan, C.: Visual and haptic simulation of linear viscoelastic tissue behavior based on experimental data. In: Haptic Symposium, pp. 201–208 (2006)
Samur, E., Sedef, M., Basdogan, C., Avtan, L., Duzgun, O.: A robotic indenter for minimally invasive characterization of soft tissues. In: Proc. of the Computer Assisted Radiology and Surgery, vol. 1281, pp. 713–718 (2005)
Mahvash, M., Hayward, V.: Haptic simulation of a tool in contact with a nonlinear deformable body. In: Surgical Simulation and Soft Tissue Deformation, vol. 2673, pp. 311–320 (2003)
Mahvash, M., Hayward, V.: High fidelity haptic synthesis of contact with deformable bodies. IEEE Comput. Graph. Appl. 24, 48–55 (2004)
Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03, pp. 587–594 (2003)
Amberg, B.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR ’07 (2007)
Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27(5) (2008)
Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution capture for modeling and animation. In: ACM Annual Conference on Computer Graphics, pp. 548–558 (2004)
Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 213–230 (2008)
Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20, 475–487 (2004)
Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 22–31 (2004)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Decarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38, 99–127 (2000)
Weise, T., Leibe, B., Van Gool, L.: Accurate and robust registration for in-hand modeling. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Chang, W., Zwicker, M.: Automatic registration for articulated shapes. In: Proceedings of the Symposium on Geometry Processing, pp. 1459–1468 (2008)
Iske, A., Arnold, V.I.: Multiresolution Methods in Scattered Data Modelling. Springer, Berlin (2004)
Acknowledgements
This work was partly supported by the ImmerSence project within the 6th Framework Programme of the European Union, FET—Presence Initiative, contract number IST-2006-027141, see also www.immersence.info.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this chapter
Cite this chapter
Harders, M., Hoever, R., Pfeifer, S., Weise, T. (2012). Data-Driven Visuo-Haptic Rendering of Deformable Bodies. In: Peer, A., Giachritsis, C. (eds) Immersive Multimodal Interactive Presence. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2754-3_8
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2754-3_8
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2753-6
Online ISBN: 978-1-4471-2754-3
eBook Packages: Computer ScienceComputer Science (R0)