Nothing Special   »   [go: up one dir, main page]

Skip to main content

Large-Scale Integration-Based Vector Field Visualization

  • Chapter
  • First Online:
Scientific Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this chapter, we provide a brief overview of the visualization of large vector fields on parallel architectures using integration-based methods. After briefly providing background, we describe the state of the art in corresponding research, focusing on parallel integral curve computation strategies. We analyze the relative benefits of two fundamental schemes and discuss algorithmic improvements presented recently. To conclude, we point out open problems and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, B. G., Max, N. L., Lane, D. A.: Unsteady flow volumes. In: Proceedings of IEEE Visualization, pp. 329–335 (1995)

    Google Scholar 

  2. Bruckschen, R., Kuester, F., Hamann, B., Joy, K. I.: Real-time out-of-core visualization of particle traces. In: Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics (PVG), pp. 45–50, Piscataway, NJ, USA, IEEE Press (2001)

    Google Scholar 

  3. Camp, D., Childs, H., Chourasia, A., Garth, C., Joy, K. I.: Evaluating the benefits of an extended memory hierarchy for parallel streamline algorithms. In: Proceedings of the IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), IEEE Press (2011)

    Google Scholar 

  4. Camp, D., Garth, C., Childs, H., Pugmire, D., Joy, K.I.: Streamline integration using MPI-Hybrid parallelism on a large multicore architecture. IEEE Trans. Vis. Comput. Graph. 17(11), 1702–1713 (2011)

    Article  Google Scholar 

  5. Chen, L., Fujishiro, I.: Optimizing parallel performance of streamline visualization for large distributed flow datasets. In: Proceedings of IEEE VGTC Pacific Visualization Symposium 2008, 87–94 (2008)

    Google Scholar 

  6. Ellsworth, D., Green, B., Moran, P.: Interactive terascale particle visualization. In: Proceedings of IEEE Visualization, pp. 353–360, IEEE Computer Society, Washington, DC, USA, (2004)

    Google Scholar 

  7. Garth, C., Krishnan, H., Tricoche, X., Bobach, T., Joy, K. I.: Generation of accurate integral surfaces in time-dependent vector fields. IEEE Trans Vis Comput Graph. 14(6), 1404–1411 (2008)

    Google Scholar 

  8. Hairer, E., Nørsett, S. P., Wanner, G.: Solving ordinary differential equations I, second edition. Springer, Berlin (1993) (volume 8 of Springer Series in Computational Mathematics)

    Google Scholar 

  9. Hultquist, J. P. M.: Constructing stream surfaces in steady 3D vector fields. In: A. E. Kaufman and G. M. Nielson. (eds.) Proceedings of IEEE Visualization, pp. 171–178, Boston, MA (1992)

    Google Scholar 

  10. Lane, D. A.: UFAT—A particle tracer for time-dependent flow fields. In: Proceedings of IEEE Visualization ’94, pp. 257–264 (1994)

    Google Scholar 

  11. Mathur, M., Haller, G., Peacock, T., Ruppert-Felsot, J., Swinney, H.: Uncovering the lagrangian skeleton of turbulence. Phys. Rev. Lett., submitted (2006)

    Google Scholar 

  12. McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. Comput. Graph. Forum 29(6), 1807–1829 (2010)

    Article  Google Scholar 

  13. Muraki, S., Lum, E., Ma, K.-L., Ogata, M., Liu, X.: A PC cluster system for simultaneous interactive volumetric modeling and visualization. In: Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics (PVG), p. 13, IEEE Computer Society Washington, DC, USA (2003)

    Google Scholar 

  14. Nouanesengsy, B., Lee, T.Y., Shen, H.W.: Load-balanced parallel streamline generation on large scale vector fields. IEEE Trans. Vis. Comput. Graph. 17(12), 1785–1794 (2011)

    Article  Google Scholar 

  15. Peterka, T., Ross, R., Nouanesengsey, B., Lee, T. Y., Shen, H. W., Kendall, W., Huang, J.: A study of parallel particle tracing for steady-state and time-varying flow fields. In: Proceedings of 25th IEEE International Parallel & Distributed Processing Symposium, Anchorage, AK (2011)

    Google Scholar 

  16. Pugmire, D., Childs, H., Garth, C., Ahern, S., Weber, G.: Scalable computation of streamlines on very large datasets. In: Proceedings of Supercomputing (2009)

    Google Scholar 

  17. Sanderson, A.R., Chen, G., Tricoche, X., Pugmire, D., Kruger, S., Breslau, J.: Analysis of recurrent patterns in toroidal magnetic fields. IEEE Trans. Vis. Comput. Graph. 16(6), 1431–1440 (2010)

    Article  Google Scholar 

  18. Shadden, S., Dabiri, J., Marsden, J.: Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105 (2006)

    Article  MathSciNet  Google Scholar 

  19. Sujudi, D., Haimes, R.: Integration of particles and streamlines in a spatially-decomposed computation, IEEE Computer Society Press. In: Proceedings of Parallel Computational Fluid Dynamics, Los Alamitos, CA (1996)

    Google Scholar 

  20. Ueng, S.K., Sikorski, C., Ma, K.-L.: Out-of-core streamline visualization on large unstructured meshes. IEEE Trans. Vis. Comput. Graph. 3(4), 370–380 (1997)

    Article  Google Scholar 

  21. Wolter, M., Gerndt, A., Kuhlen, T., Bischof, C.: Markov prefetching for multi-block particle tracing on parallel post-processors. In: J. Kown, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, (eds.) Parallel Computational Fluid Dynamics: Parallel Computings and its Applications, Proceedings of the Parallel CFD Conference, pp. 27–34. Elsevier, London (2007)

    Google Scholar 

  22. Xue, D., Zhang, C., Crawfis, R.: Rendering implicit flow volumes. In: Proceedings of the IEEE Visualization ’04 Conference, pp. 99–106 (2004)

    Google Scholar 

  23. Yu, H., Wang, C., Ma, K.-L.: Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of Supercomputing (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Garth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Garth, C., Gaither, K. (2014). Large-Scale Integration-Based Vector Field Visualization. In: Hansen, C., Chen, M., Johnson, C., Kaufman, A., Hagen, H. (eds) Scientific Visualization. Mathematics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-6497-5_26

Download citation

Publish with us

Policies and ethics