Preview
Unable to display preview. Download preview PDF.
References
AAAI-96 (1996). Proceedings of the 13th National Conference of the American Association for Artificial Intelligence, Portland, OR. MIT Press.
Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M., and Stamatiou, Y. (1997). Random constraint satisfaction: a more accurate picture. In 3rd Conference on the Principles and Practice of Constraint Programming (CP’97), volume 1330 of Lecture Notes in Computer Science, pages 107–120. Springer Verlag.
Allen, James F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843.
Asher, Nicholas and Vieu, Laure (1995). Towards a geometry of common sense: A semantics and a complete axiomatization of mereotopology. In IJCAI-95, 1995, pages 846–852.
Balbiani, Philippe, Condotta, Jean-François, and Farinas del Cerro, Luis (1998). A model for reasoning about bidimensional temporal relations. In Cohn et al., 1998, pages 124–130.
Balbiani, Philippe, Condotta, Jean-François, and Farinas del Cerro, Luis (1999a). A new tractable subclass of the rectangle algebra. In IJCAI-99, 1999, pages 442–447.
Balbiani, Philippe, Condotta, Jean-François, and Farinas del Cerro, Luis (1999b). A tractable subclass of the block algebra: constraint propagation and preconvex relations. In Proccedings of the 9th Portuguese Conference on Artificial Intelligence, pages 75–89.
Bennett, Brandon (1994). Spatial reasoning with propositional logic. In Doyle, J., Sandewall, E., and Torasso, P., editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference, pages 51–62, Bonn, Germany. Morgan Kaufmann.
Bessière, Christian (1996). A simple way to improve path-consistency in Interval Algebra networks. In AAAI-96, 1996, pages 375–380.
Biacino, Loredana and Gerla, Giangiacomo (1991). Connection structures. Notre Dame Journal of Formal Logic, 32(2):242–247.
Borgo, Stefano, Guarino, Nicola, and Masolo, Claudio (1996). A pointless theory of space based on strong connection and congruence. In Aiello, L.C., Doyle, J., and Shapiro, S.C., editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 5th International Conference, pages 220–229, Cambridge, MA. Morgan Kaufmann.
Cheeseman, Peter, Kanefsky, Bob, and Taylor, William M. (1991). Where the really hard problems are. In Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 331–337, Sydney, Australia. Morgan Kaufmann.
Clarke, Bowman L. (1981). A calculus of individuals based on connection. Notre Dame Journal of Formal Logic, 22(3):204–218.
Clarke, Bowman L. (1985). Individuals and points. Notre Dame Journal of Formal Logic, 26(1):61–75.
Clementini, Eliseo, di Felice, Paolino, and Hernandez, Daniel (1997). Qualitative representation of positional information. Artificial Intelligence, 95(2): 317–356.
Cohn, A.G., Schubert, L., and Shapiro, S.C., editors (1998). Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference, Trento, Italy.
Cohn, Anthony G., Bennett, Brandon, Gooday, John, and Gotts, Nicholas M. (1997). Representing and reasoning with qualitative spatial relations about regions. In Stock, O., editor, Spatial and Temporal Reasoning, pages 97–134. Kluwer, Dordrecht, Holland.
Cohn, Anthony G. and Varzi, Achille C. (1998). Connection relations in mereotopology. In Proceedings of the 13th European Conference on Artificial Intelligence, pages 150–154, Amsterdam, The Netherlands. Wiley.
Cohn, Anthony G. and Varzi, Achille C. (1999). Modes of connection. In Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science, pages 299–314.
Cook, Stephen A. (1971). The complexity of theorem-proving procedures. In Proc. 3rd Ann. ACM Symp. on Theory of Computing, pages 151–158, New York. Association for Computing Machinery.
Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L. (1990). Introduction to Algorithms. MIT Press.
Dornheim, Christoph (1998). Undecidability of plane polygonal mereotopology. In Cohn et al., 1998.
Egenhofer, Max J. (1991). Reasoning about binary topological relations. In Günther, O. and Schek, H.-J., editors, Proceedings of the Second Symposium on Large Spatial Databases, SSD’91, volume 525 of Lecture Notes in Computer Science, pages 143–160. Springer-Verlag, Berlin, Heidelberg, New York.
Egenhofer, Max J., Clementini, Eliseo, and Felice, Paolino Di (1994). Topological relations between regions with holes. International Journal of Geographical Information Systems, 8(2):129–144.
Egenhofer, Max J. and Franzosa, Robert D. (1994). On the equivalence of topological relations. International Journal of Geographical Information Systems, 8(6):133–152.
Egenhofer, Max J. and Sharma, Jayant (1993). Assessing the consistency of complete and incomplete topological information. Geographical Systems, 1(1):47–68.
Forbus, Kenneth D., Nielsen, Paul, and Faltings, Boi (1987). Qualitative kinematics: A framework. In McDermott, J., editor, Proceedings of the 10th International Joint Conference on Artificial Intelligence, Milan, Italy. Morgan Kaufmann.
Frank, Andrew U. (1991). Qualitative spatial reasoning about cardinal directions. In Proceedings of the 7th Austrian Conference on Artificial Intelligence, pages 157–167.
Freksa, Christian (1992). Using orientation information for qualitative spatial reasoning. In A.U. Frank, I. Campari, U. Formentini, editor, Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, volume 639 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York.
Galton, Antony (1999). Mereotopology of discrete space. In Freksa, C. and Mark, D.M., editors, Spatial information theory: Cognitive and computational foundations of geographic information science, volume 1661 of Lecture Notes in Computer Science, pages 251–266, Berlin, Heidelberg, New York. Springer Verlag.
Garey, Michael R. and Johnson, David S. (1979). Computers and Intractability-A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA.
Gent, Ian P. and Walsh, Toby (1996). The satisfiability constraint gap. Artificial Intelligence, 81(1–2):59–80.
Gerevini, Alfonso and Renz, Jochen (1998). Combining topological and qualitative size constraints for spatial reasoning. In Proceedings of the 4th International Conference on Principles and Practice of Constraint Programming, Pisa, Italy.
Gerevini, Alfonso and Renz, Jochen (2002). Combining topological and size information for spatial reasoning. Artificial Intelligence, 137(1–2):1–42.
Golumbic, Martin C. and Shamir, Ron (1993). Complexity and algorithms for reasoning about time: A graph-theoretic approach. Journal of the Association for Computing Machinery, 40(5):1128–1133.
Gotts, Nicholas M. (1996). Using the RCC formalism to describe the topology of spherical regions. Technical Report 96-24, University of Leeds, School of Computer Studies.
Gotts, Nicholas M., Gooday, John M., and Cohn, Anthony G. (1996). A connection based approach to commonsense topological description and reasoning. The Monist, 79(1):51–75.
Goyal, Roop and Egenhofer, Max (2001). Similarity of direction relations. In Jensen, C., Schneider, M., Seeger, B. and Tsotras, V., editors, Seventh international symposium on spatial and temporal databases, volume 2121 of Lecture Notes in Computer Science, pages 36–55, LosAngeles, CA. Springer-Verlag.
Grigni, Michelangelo, Papadias, Dimitris, and Papadimitriou, Christos (1995). Topological inference. In IJCAI-95, 1995, pages 901–906.
Grzegorczyk, Andrzej (1951). Undecidability of some topological theories. Fundamenta Mathematicae, 38:137–152.
Guesgen, Hans (1989). Spatial reasoning based on Allen’s temporal logic. Technical Report TR-89-049, ICSI, Berkeley, CA.
Hernàndez, Daniel (1994). Qualitative Representation of Spatial Knowledge, volume 804 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg, New York.
Hernàndez, Daniel, Clementini, Eliseo, and di Felice, Paolino (1995). Qualitative distances. In Spatial Information Theory: A Theoretical basis for GIS, volume 988 of Lecture Notes in Computer Science, pages 45–58, Berlin, Heidelberg, New York. Springer-Verlag.
Hirsch, Robin (1999). A finite relation algebra with undecidable network satisfaction problem. Bulletin of the IGPL.
Hogg, Tad, Huberman, Bernardo A., and (eds), Colin P. Williams (1996). Special volume on frontiers in problem solving: Phase transistions and complexity. Artificial Intelligence, 81(1–2).
IJCAI-95 (1995). Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada.
IJCAI-99 (1999). Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden.
Isli, Amar and Moratz, Reinhard (1999). Qualitative spatial representation and reasoning: Algebraic models for relative position. Technical Report 284, Universität Hamburg, Fachbereich Informatik.
Johnson, David S. (1990). A catalog of complexity classes. In van Leeuwen, J., editor, Handbook of Theoretical Computer Science, Vol. A, pages 67–161. MIT Press.
Kautz, Henry A. and Ladkin, Peter B. (1991). Integrating metric and qualitative temporal reasoning. In Proceedings of the 9th National Conference of the American Association for Artificial Intelligence, pages 241–246, Anaheim, CA. MIT Press.
Krokhin, Andrei A., Jeavons, Peter, and Jonsson, Peter (2003). Reasoning about temporal relations: The tractable subalgebras of allen’s interval algebra. Journal of the ACM, 50(5):591–640.
Ladkin, Peter B. and Maddux, Roger (1994). On binary constraint problems. Journal of the Association for Computing Machinery, 41(3):435–469.
Ladkin, Peter B. and Reinefeld, Alexander (1992). Effective solution of qualitative interval constraint problems. Artificial Intelligence, 57(1):105–124.
Ligozat, Gerard (1996). A new proof of tractability for ORD-Horn relations. In AAAI-96, 1996, pages 715–720.
Ligozat, Gerard (1998). Reasoning about cardinal directions. Journal of Visual Languages and Computing, 9:23–44.
Mackworth, Alan K. (1977). Consistency in networks of relations. Artificial Intelligence, 8:99–118.
Mackworth, Alan K. and Freuder, Eugene C. (1985). The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial Intelligence, 25:65–73.
Montanari, Ugo (1974). Networks of constraints: fundamental properties and applications to picture processing. Information Science, 7:95–132.
Montello, Daniel R. (1993). Scale and multiple psychologies of space. In Frank, A.U. and Campari, I., editors, Spatial information Theory: A theoretical basis for GIS, volume 716 of Lecture Notes in Computer Science, pages 312–321, Berlin, Heidelberg, New York. Springer Verlag.
Nebel, Bernhard (1997). Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-Horn class. CONSTRAINTS, 3(1):175–190.
Nebel, Bernhard and Bürckert, Hans-Jürgen (1995). Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Journal of the Association for Computing Machinery, 42(1):43–66.
Papadias, Dimitris and Theodoridis, Yannis (1997). Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographic Information Systems, 11(2):111–138.
Papadimitriou, Christos H. (1994). Computational Complexity. Addison-Wesley, Reading, MA.
Piaget, Jean and Inhelder, Bärbel (1948). La représentation de l’espace chez l’enfant. Presses universitaires de France, Paris, France.
Pratt, Ian and Schoop, Dominik (1998). A complete axiom system for polygonal mereotopology of the real plane. Journal of Philosophical Logic, 27: 621–658.
Pujari, Arun K., Kumari, G. Vijaya, and Sattar, Abdul (1999). INDU: An interval and duration network. In Australian Joint Conference on Artificial Intelligence, pages 291–303.
Randell, David A. and Cohn, Anthony G. (1989). Modelling topological and metrical properties in physical processes. In Brachman, R., Levesque, H. J., and Reiter, R., editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 1st International Conference, pages 55–66, Toronto, ON. Morgan Kaufmann.
Randell, David A., Cui, Zhan, and Cohn, Anthony G. (1992). A spatial logic based on regions and connection. In Nebel, B., Swartout, W., and Rich, C., editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference, pages 165–176, Cambridge, MA. Morgan Kaufmann.
Renz, Jochen (1998). A canonical model of the Region Connection Calculus. In Cohn et al., 1998, pages 330 – 341.
Renz, Jochen (1999). Maximal tractable fragments of the Region Connection Calculus: A complete analysis. In IJCAI-99, 1999, pages 448–454.
Renz, Jochen (2001). A spatial odyssey of the interval algebra: 1. directed intervals. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 51–56, Seattle, WA.
Renz, Jochen (2002). Qualitative Spatial Reasoning with Topological Information, volume 2293 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, New York.
Renz, Jochen (2007). Qualitative spatial and temporal reasoning: Efficient algorithms for everyone. In Proceedings of the 20th International Joint Conference on Artificial Intelligence, January 6-12, pages 526–531, Hyderabad, India.
Renz, Jochen and Mitra, Debasis (2004). Qualitative direction calculi with arbitrary granularity. In PRICAI 2004: Trends in Artificial Intelligence, 8th Pacific Rim International Conference on Artificial Intelligence, pages 65–74.
Renz, Jochen and Nebel, Bernhard (1999). On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus. Artificial Intelligence, 108(1–2):69–123.
Renz, Jochen and Nebel, Bernhard (2001). Efficient methods for qualitative spatial reasoning. Journal of Artificial Intelligence Research, 15:289–318.
Schaefer, Thomas J. (1978). The complexity of satisfiability problems. In Proc. 10th Ann. ACM Symp. on Theory of Computing, pages 216–226, New York. Association for Computing Machinery.
Schoop, Dominik (1999). A model-theoretic approach to mereotopology. PhD thesis, Faculty of Science and Engineering, University of Manchester.
Scivos, Alexander and Nebel, Bernhard (2001). Double-crossing: Decidability and computational complexity of a qualitative calculus for navigation. In Spatial Information Theory: Foundations of Geographic Information Science.
Skiadopoulos, Spiros and Koubarakis, Manolis (2005). On the consistency of cardinal direction constraints. Artificial Intelligence, 163(1):91–135.
Smith, Terence R. and Park, Keith K. (1992). Algebraic approach to spatial reasoning. International Journal of Geographic Information Systems, 6(3): 177–192.
Tarski, Alfred (1941). On the calculus of relations. Journal of Symbolic Logic, 6:73–89.
van Beek, Peter (1992). Reasoning about qualitative temporal information. Artificial Intelligence, 58(1–3):297–321.
van Beek, Peter and Manchak, Dennis W. (1996). The design and experimental analysis of algorithms for temporal reasoning. Journal of Artificial Intelligence Research, 4:1–18.
Vilain, Marc B. and Kautz, Henry A. (1986). Constraint propagation algorithms for temporal reasoning. In Proceedings of the 5th National Conference of the American Association for Artificial Intelligence, pages 377–382, Philadelphia, PA.
Vilain, Marc B., Kautz, Henry A., and van Beek, Peter (1989). Constraint propagation algorithms for temporal reasoning: A revised report. In Weld, D. S. and de Kleer, J., editors, Readings in Qualitative Reasoning about Physical Systems, pages 373–381. Morgan Kaufmann, San Mateo, CA.
Whitehead, Alfred N. (1929). Process and Reality. The MacMillan Company, New York.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this chapter
Cite this chapter
Renz, J., Nebel, B. (2007). Qualitative Spatial Reasoning Using Constraint Calculi. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds) Handbook of Spatial Logics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5587-4_4
Download citation
DOI: https://doi.org/10.1007/978-1-4020-5587-4_4
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-5586-7
Online ISBN: 978-1-4020-5587-4
eBook Packages: Humanities, Social Sciences and LawPhilosophy and Religion (R0)