Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mapping the Topography of Spatial Gene Expression with Interpretable Deep Learning

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2024)

Abstract

Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice—analogous to a map of elevation in a landscape—using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth. GASTON models both continuous gradients and discontinuous spatial variation in the expression of individual genes. We show that GASTON accurately identifies spatial domains and marker genes in multiple SRT datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 10x Visium Genomics Visium Spatial Gene Expression. https://www.10xgenomics.com/products/spatial-gene-expression

  2. Cable, D.M., et al.: Cell type-specific inference of differential expression in spatial transcriptomics. Nat. Methods 19(9), 1076–1087 (2022)

    Article  Google Scholar 

  3. Cable, D.M., et al.: Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40(4), 517–526 (2022)

    Article  Google Scholar 

  4. Chen, A., et al.: Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185(10), 1777–1792 (2022)

    Article  Google Scholar 

  5. Chitra, U., et al.: Mapping the topography of spatial gene expression with interpretable deep learning. bioRxiv (2023)

    Google Scholar 

  6. Marx, V.: Method of the year: spatially resolved transcriptomics. Nat. Methods 18(1), 9–14 (2021)

    Article  Google Scholar 

  7. Moses, L., Pachter, L.: Museum of spatial transcriptomics. Nat. Methods 19(5), 534–546 (2022)

    Article  Google Scholar 

  8. Palla, G., Fischer, D.S., Regev, A., Theis, F.J.: Spatial components of molecular tissue biology. Nat. Biotechnol. 40(3), 308–318 (2022)

    Article  Google Scholar 

  9. Rao, A., Barkley, D., França, G.S., Yanai, I.: Exploring tissue architecture using spatial transcriptomics. Nature 596(7871), 211–220 (2021)

    Article  Google Scholar 

  10. Rodriques, S.G., et al.: Slide-Seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363(6434), 1463–1467 (2019)

    Article  Google Scholar 

  11. Sarkar, A., Stephens, M.: Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. Nat. Genet. 53(6), 770–777 (2021)

    Article  Google Scholar 

  12. Stickels, R.R., et al.: Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nat. Biotechnol. 39(3), 313–319 (2021)

    Article  Google Scholar 

  13. Tian, L., Chen, F., Macosko, E.Z.: The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41(6), 773–782 (2023)

    Article  Google Scholar 

  14. Townes, F.W., Hicks, S.C., Aryee, M.J., Irizarry, R.A.: Feature selection and dimension reduction for single-cell RNA-SEq based on a multinomial model. Genome Biol. 20, 1–16 (2019)

    Article  Google Scholar 

  15. Velten, B., Stegle, O.: Principles and challenges of modeling temporal and spatial omics data. Nat. Methods, 1–13 (2023)

    Google Scholar 

  16. Zeng, H.: What is a cell type and how to define it? Cell 185(15), 2739–2755 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Raphael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chitra, U. et al. (2024). Mapping the Topography of Spatial Gene Expression with Interpretable Deep Learning. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3989-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-1-0716-3988-7

  • Online ISBN: 978-1-0716-3989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics