Nothing Special   »   [go: up one dir, main page]

Skip to main content

Social Media Visual Analytics for Events

  • Chapter
Social Media Modeling and Computing

Abstract

For large-scale multimedia events such as televised debates and speeches, the amount of content on social media channels such as Facebook or Twitter can easily become overwhelming, yet still contain information that may aid and augment understanding of the multimedia content via individual social media items, or aggregate information from the crowd’s response. In this work we discuss this opportunity in the context of a social media visual analytic tool, Vox Civitas, designed to help journalists, media professionals, or other researchers make sense of large-scale aggregations of social media content around multimedia broadcast events. We discuss the design of the tool, present and evaluate the text analysis techniques used to enable the presentation, and detail the visual and interaction design. We provide an exploratory evaluation based on a user study in which journalists interacted with the system to analyze and report on a dataset of over one 100 000 Twitter messages collected during the broadcast of the U.S. State of the Union presidential address in 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://sm.rutgers.edu/vox.

References

  1. Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Comput. Linguist. 34(4), 555–596 (2008)

    Article  Google Scholar 

  2. Clayman, S.: Defining moments, presidential debates, and the dynamics of quotability. J. Commun. 45(3), 118–146 (1995)

    Article  Google Scholar 

  3. Collins, C., Viégas, F., Wattenberg, M.: Parallel tag coulds to explore and analyze faceted text corpora. In: IEEE Symposium on Visual Analytics Science and Technology (VAST) (2009)

    Google Scholar 

  4. De Choudhury, M., Sundaram, H., John, A., Seligmann, D.D.: What makes conversations interesting?: Themes, participants and consequences of conversations in online social media. In: Proc. WWW (2009)

    Google Scholar 

  5. De Longueville, B., Smith, R., Luraschi, G.: “OMG, from here, I can see the flames!”: A use case of mining location based social networks to acquire spatio-temporal data on forest fires. In: Workshop on Location Based Social Networks (LBSN) (2009)

    Google Scholar 

  6. Diakopoulos, N., Shamma, D.A.: Characterizing debate performance via aggregated twitter sentiment. In: Proc. CHI (2010)

    Google Scholar 

  7. Diakopoulos, N., Goldenberg, S., Essa, I.: Videolyzer: Quality analysis of online informational video for bloggers and journalists. In: Proceedings of CHI (2009)

    Google Scholar 

  8. Fisher, D., Hoff, A., Robertson, G., Hurst, M.: Narratives: A visualization to track narrative events as they develop. In: IEEE Symposium on Visual Analytics Science and Technology (VAST) (2008)

    Google Scholar 

  9. Franklin, B., Hamer, M., Hanna, M., Kinsey, M., Richardson, J.E.: Key Concepts in Journalism Studies. Sage, Thousand Oaks (2005)

    Google Scholar 

  10. Harcup, T., O’Neill, D.: What is news? Galtung and ruge revisited. Journal. Stud. 2(2), 261–280 (2001)

    Google Scholar 

  11. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic changes in large document collections. IEEE Trans. Vis. Comput. Graph. 8(1), 9–20 (2002)

    Article  Google Scholar 

  12. Kang, Y.-a., Görg, C., Stasko, J.: Evaluating visual analytics systems for investigative analysis: Deriving design principles from a case study. In: IEEE Symposium on Visual Analytics Science and Technology (2009)

    Google Scholar 

  13. Kovach, B., Rosenstiel, T.: The Elements of Journalism: What Newspeople Should Know and the Public Should Expect. Three Rivers Press, New York (2007)

    Google Scholar 

  14. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Conference on Knowledge Discovery and Data Mining (KDD) (2009)

    Google Scholar 

  15. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  16. Mertens, R., Farzan, R., Brusilovsky, P.: Social navigation in web lectures. In: Proc. Hypertext and Hypermedia (2006)

    Google Scholar 

  17. Nagar, N.a.: The loud public: Users’ comments and the online news media. In: Online Journalism Symposium (2009)

    Google Scholar 

  18. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis (2008)

    Google Scholar 

  19. Pike, W., Stasko, J., Chang, R., O’Connell, T.: The science of interaction. Inf. Vis. 8(4), 263–274 (2009)

    Article  Google Scholar 

  20. Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: International Conference on Intelligence Analysis (2005)

    Google Scholar 

  21. Rose, S., Butner, S., Cowley, W., Gregory, M., Walker, J.: Describing story evolution from dynamic information streams. In: IEEE Symposium on Visual Analytics Science and Technology (VAST) (2009)

    Google Scholar 

  22. Sakaki, T., Okazako, M., Matsuo, Y.: Earthquake shakes twitter users: Real-time event detection by social sensors. In: Proc. WWW (2010)

    Google Scholar 

  23. Shamma, D., Kennedy, L., Churchill, E.: Conversational shadows: Describing live media events using short messages. In: Proceedings of ICWSM (2010)

    Google Scholar 

  24. Shamma, D.A., Kennedy, L., Churchill, E.: Tweet the debates. In: ACM Multimedia Workshop on Social Media (WSM) (2009)

    Google Scholar 

  25. Shamma, D.A., Shaw, R., Shafton, P.L., Liu, Y.: Watch what I watch: Using community activity to understand content. In: Proc. MIR: Workshop on Multimedia Information Retrieval (2007)

    Google Scholar 

  26. Starbird, K., Palen, L., Hughes, A., Vieweg, S.: Chatter on the red: What hazards threat reveals about the social life of microblogged information. In: Proceedings of CSCW (2010)

    Google Scholar 

  27. Thomas, J., Cook, K. (eds.): Illuminating the Path. IEEE, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Diakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Diakopoulos, N., Naaman, M., Yazdani, T., Kivran-Swaine, F. (2011). Social Media Visual Analytics for Events. In: Hoi, S., Luo, J., Boll, S., Xu, D., Jin, R., King, I. (eds) Social Media Modeling and Computing. Springer, London. https://doi.org/10.1007/978-0-85729-436-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-436-4_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-435-7

  • Online ISBN: 978-0-85729-436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics