Abstract
For large-scale multimedia events such as televised debates and speeches, the amount of content on social media channels such as Facebook or Twitter can easily become overwhelming, yet still contain information that may aid and augment understanding of the multimedia content via individual social media items, or aggregate information from the crowd’s response. In this work we discuss this opportunity in the context of a social media visual analytic tool, Vox Civitas, designed to help journalists, media professionals, or other researchers make sense of large-scale aggregations of social media content around multimedia broadcast events. We discuss the design of the tool, present and evaluate the text analysis techniques used to enable the presentation, and detail the visual and interaction design. We provide an exploratory evaluation based on a user study in which journalists interacted with the system to analyze and report on a dataset of over one 100 000 Twitter messages collected during the broadcast of the U.S. State of the Union presidential address in 2010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Comput. Linguist. 34(4), 555–596 (2008)
Clayman, S.: Defining moments, presidential debates, and the dynamics of quotability. J. Commun. 45(3), 118–146 (1995)
Collins, C., Viégas, F., Wattenberg, M.: Parallel tag coulds to explore and analyze faceted text corpora. In: IEEE Symposium on Visual Analytics Science and Technology (VAST) (2009)
De Choudhury, M., Sundaram, H., John, A., Seligmann, D.D.: What makes conversations interesting?: Themes, participants and consequences of conversations in online social media. In: Proc. WWW (2009)
De Longueville, B., Smith, R., Luraschi, G.: “OMG, from here, I can see the flames!”: A use case of mining location based social networks to acquire spatio-temporal data on forest fires. In: Workshop on Location Based Social Networks (LBSN) (2009)
Diakopoulos, N., Shamma, D.A.: Characterizing debate performance via aggregated twitter sentiment. In: Proc. CHI (2010)
Diakopoulos, N., Goldenberg, S., Essa, I.: Videolyzer: Quality analysis of online informational video for bloggers and journalists. In: Proceedings of CHI (2009)
Fisher, D., Hoff, A., Robertson, G., Hurst, M.: Narratives: A visualization to track narrative events as they develop. In: IEEE Symposium on Visual Analytics Science and Technology (VAST) (2008)
Franklin, B., Hamer, M., Hanna, M., Kinsey, M., Richardson, J.E.: Key Concepts in Journalism Studies. Sage, Thousand Oaks (2005)
Harcup, T., O’Neill, D.: What is news? Galtung and ruge revisited. Journal. Stud. 2(2), 261–280 (2001)
Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic changes in large document collections. IEEE Trans. Vis. Comput. Graph. 8(1), 9–20 (2002)
Kang, Y.-a., Görg, C., Stasko, J.: Evaluating visual analytics systems for investigative analysis: Deriving design principles from a case study. In: IEEE Symposium on Visual Analytics Science and Technology (2009)
Kovach, B., Rosenstiel, T.: The Elements of Journalism: What Newspeople Should Know and the Public Should Expect. Three Rivers Press, New York (2007)
Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Conference on Knowledge Discovery and Data Mining (KDD) (2009)
Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Mertens, R., Farzan, R., Brusilovsky, P.: Social navigation in web lectures. In: Proc. Hypertext and Hypermedia (2006)
Nagar, N.a.: The loud public: Users’ comments and the online news media. In: Online Journalism Symposium (2009)
Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis (2008)
Pike, W., Stasko, J., Chang, R., O’Connell, T.: The science of interaction. Inf. Vis. 8(4), 263–274 (2009)
Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: International Conference on Intelligence Analysis (2005)
Rose, S., Butner, S., Cowley, W., Gregory, M., Walker, J.: Describing story evolution from dynamic information streams. In: IEEE Symposium on Visual Analytics Science and Technology (VAST) (2009)
Sakaki, T., Okazako, M., Matsuo, Y.: Earthquake shakes twitter users: Real-time event detection by social sensors. In: Proc. WWW (2010)
Shamma, D., Kennedy, L., Churchill, E.: Conversational shadows: Describing live media events using short messages. In: Proceedings of ICWSM (2010)
Shamma, D.A., Kennedy, L., Churchill, E.: Tweet the debates. In: ACM Multimedia Workshop on Social Media (WSM) (2009)
Shamma, D.A., Shaw, R., Shafton, P.L., Liu, Y.: Watch what I watch: Using community activity to understand content. In: Proc. MIR: Workshop on Multimedia Information Retrieval (2007)
Starbird, K., Palen, L., Hughes, A., Vieweg, S.: Chatter on the red: What hazards threat reveals about the social life of microblogged information. In: Proceedings of CSCW (2010)
Thomas, J., Cook, K. (eds.): Illuminating the Path. IEEE, New York (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag London Limited
About this chapter
Cite this chapter
Diakopoulos, N., Naaman, M., Yazdani, T., Kivran-Swaine, F. (2011). Social Media Visual Analytics for Events. In: Hoi, S., Luo, J., Boll, S., Xu, D., Jin, R., King, I. (eds) Social Media Modeling and Computing. Springer, London. https://doi.org/10.1007/978-0-85729-436-4_9
Download citation
DOI: https://doi.org/10.1007/978-0-85729-436-4_9
Publisher Name: Springer, London
Print ISBN: 978-0-85729-435-7
Online ISBN: 978-0-85729-436-4
eBook Packages: Computer ScienceComputer Science (R0)