Nothing Special   »   [go: up one dir, main page]

Skip to main content

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction

  • Conference paper
Research and Development in Intelligent Systems XX (SGAI 2003)

Abstract

We present a multi-agent approach to constraint satisfaction where feedback and reinforcement are used in order to avoid local optima and, consequently, to improve the overall solution. Our approach, FeReRA, is based on the fact that an agent’s local best performance does not necessarily contribute to the system’s best performance. Thus, agents may be rewarded for improving the system’s performance and penalised for not contributing towards a better solution. Hence, agents may be forced to choose sub-optimal moves when they reach a specified penalty threshold as a consequence of their lack of contribution towards a better overall solution. This may allow other agents to choose better moves and, therefore, to improve the overall performance of the system. FeReRA is tested against its predecessor, ERA, and a comparative evaluation of both approaches is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agassounon W., Martinoli A. and Goodman R., A scalable distributed algorithm for allocating workers in embedded systems. In: Proceedings of the 2001 IEEE Systems, Man and Cybernetics Conference. October 2001, pp. 3367–3373.

    Google Scholar 

  2. Basham, M.B., Automatic frequency planning for mixed voice and GPRS systems MSc Dissertation, University of Sussex, 2002.

    Google Scholar 

  3. Bonabeau E., Dorigo M., and Theraulaz G., Inspiration for optimization from social insect behaviour Nature, 407, pp. 39–42, July 2000.

    Article  Google Scholar 

  4. Bonabeau E., Henaux F., Guerin S., Snyers D., Kuntz P., Routing in telecommunications networks with “smart” ant-like agents. In: Proceedings of IATA’98, Second International Workshop on Intelligent Agents for Telecommunications Applications. Lecture Notes in AI vol. 1437, Springer Verlag, 1998.

    Google Scholar 

  5. Cicirello V.A. and Smith S. F., Improved routing wasps for distributed factory control. In: IJCAU-0I Workshop on Artificial Intelligence and Manufacturing: New AI Paradigmsfor Manufacturing, August 2001

    Google Scholar 

  6. Fabiunke M., A swarm intelligence approach to constraint satisfaction. In: Proceedings of the Sixth Conference on Integrated Design and Process Technology, June 2002.

    Google Scholar 

  7. Faiunke M. and Kock G., A connectionist method to solve job shop problems. Cybernetics and Systems: An International Journal, 31(5), pp. 491–506, 2000.

    Article  Google Scholar 

  8. Fitzpatrick S. and Meertens L., An experimental assessment of a stochastic anytime, decentralized, soft colourer for sparse graphs. In: Proceedings of the Symposium on Stochastic Algorithms, Foundations and Applications, Springer, Berlin, pp. 49–64, 2000.

    Google Scholar 

  9. Han J., Liu J. and Qingsheng C., From ALIFE agents to a kingdom of n-queens In: J. Liu and N. Zhong eds., Intelligent Agent Technology: Systems, Methodologies, and Tools, pp. 110–120, The World Scientific Publishing Co. Pte, Ltd., 1999.

    Google Scholar 

  10. Lawlor M. and White T., A self organizing social insect model for dynamic frequency allocation in cellular telephone networks. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2003), to appear.

    Google Scholar 

  11. Liu J., Han J. and Tang Y.Y., Multi-agent oriented constraint satisfaction Artificial Intelligence 136(1) pp. 101–144, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  12. Swarm Development Group, Swarm simulation system, http://www.swarm.org

  13. Tateson R., Self-organising pattern formation: fruit flies and cell phones. In: Autonomous Agents and Multi-Agent Systems, Vol. 3,No.2, pp. 198–212, 2000.

    Google Scholar 

  14. Voudouris, C, Guided local search for combinatorial optimisation problems, PhD Thesis, Department of Computer Science, University of Essex, Colchester, UK, July, 1997

    Google Scholar 

  15. Wu, Z. and Wah, B. W. Trap escaping strategies in discrete lagrangian methods for solving hard satisfiability and maximum satisfiability problems. In AAAI/IAAI, pp. 673–678, 1999.

    Google Scholar 

  16. Yokoo M. and Hirayama K., Algorithms for Distributed Constraint Satisfaction. In Proceedings of the 2 nd International Conference on Multi agent systems, pp. 401–408, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this paper

Cite this paper

Basharu, M., Ahriz, H., Arana, I. (2004). Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction. In: Coenen, F., Preece, A., Macintosh, A. (eds) Research and Development in Intelligent Systems XX. SGAI 2003. Springer, London. https://doi.org/10.1007/978-0-85729-412-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-412-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-780-3

  • Online ISBN: 978-0-85729-412-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics