Abstract
This chapter deals with compressed coding of graphs. We focus on planar graphs, a widely studied class of graphs. A planar graph is a graph that admits an embedding in the plane without edge crossings. Planar maps (class of embeddings of a planar graph) are easier to study than planar graphs, but as a planar graph may admit an exponential number of maps, they give little information on graphs. In order to give an information-theoretic upper bound on planar graphs, we introduce a definition of a quasi-canonical embedding for planar graphs: well-orderly maps. This appears to be an useful tool to study and encode planar graphs. We present upper bounds on the number of unlabeled1 planar graphs and on the number of edges in a random planar graph. We also present an algorithm to compute well-orderly maps and implying an efficient coding of planar graphs.
Nodes and edges are not assumed to be labeled.
MSC2000 Primary 05C10; Secondary 05C10, 05C30, 05C85.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The original compressor runs in expected linear time. We give in this chapter a simpler guaranteed linear time construction with asymptotically the same performances.
References
Alonso, L., Rémy, J.L., Schott, R.: A linear-time algorithm for the generation of trees. Algorithmica 17(2), 162–182 (1997)
Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Planar maps and airy phenomena. In: 27th International Colloquium on Automata, Languages and Programming (ICALP), vol. 1853 of Lecture Notes in Computer Science, pp. 388–402. Springer, New York (2000)
Barcucci, E., del Lungo, A., Pergola, E.: Random generation of trees and other combinatorial objects. Theor. Comput. Sci. 218(2), 219–232 (1999)
Bodirsky, M., Kang, M.: Generating random outerplanar graphs. In: 1st Workshop on Algorithms for Listing, Counting, and Enumeration (ALICE) (2003)
Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths. In: Formal Power Series & Algebraic Combinatorics (FPSAC) (2002)
Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), vol. 2607 of Lecture Notes in Computer Science, pp. 499–510. Springer, New York (2003)
Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar graphs, via well-orderly maps and trees. Graph. Combinator. 22, 1–18 (2006)
Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms (SODA), pp. 506–515. ACM-SIAM (2001)
Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using pq-trees. J. Comput. Syst. Sci. 30(1), 54–76 (1985)
Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using pq-trees. J. Comput. Syst. Sci. 30(1), 54–76 (1985)
Chuang, R.C.N., Garg, A., He, X., Kao, M.Y., Lu, H.I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: Guldstrand Larsen, K., Skyum, S., Winskel, G. (eds.) 25th International Colloquium on Automata, Languages and Programming (ICALP), vol. 1443 of Lecture Notes in Computer Science, pp. 118–129. Springer, New York (1998)
Denise, A., Vasconcellos, M., Welsh, D.J.A.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)
Diestel, R.: Graph Theory, 2nd edn., vol. 173 of Graduate Texts in Mathematics. Springer, New York (2000)
Epstein, P., Sack, J.R.: Generating triangulations at random. ACM Trans. Model. Comput. Simul. 4, 267–278 (1994)
Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks. SIAM J. Comput. 18(4), 843–857 (1989)
Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) 26th International Colloquium on Automata, Languages and Programming (ICALP), vol. 1644 of Lecture Notes in Computer Science, pp. 351–360. Springer, New York (1999)
Gerke, S., McDiarmid, C.J.H.: On the number of edges in random planar graphs. Combinator. Probab. Comput. 13, 165–183 (2004)
Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs. J. Am. Math. Soc. 22, 309–329 (2009)
He, X., Kao, M.Y., Lu, H.I.: A fast general methodology for information-theoretically optimal encodings of graphs. SIAM J. Comput. 30(3), 838–846 (2000)
Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discrete Appl. Math. 58, 239–252 (1995)
Khodakovsky, A., Alliez, P., Desbrun, M., Schröder, P.: Near-optimal connectivity encoding of 2-manifold polygon meshes. Graph. Model. (2002). To appear in a special issue
King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry (CCCG), pp. 146–149 (1999)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)
Liskovets, V.A., Walsh, T.R.: Ten steps to counting planar graphs. Congressus Numerantium 60, 269–277 (1987)
Liu, Y.: Enumeration of simple planar maps. Utilitas Math. 34, 97–104 (1988)
Lu, H.I.: Improved compact routing tables for planar networks via orderly spanning trees. In: 8th Annual International Computing & Combinatorics Conference (COCOON), vol. 2387 of Lecture Notes in Computer Science, pp. 57–66. Springer, New York (2002)
Lu, H.I.: Linear-time compression of bounded-genus graphs into information-theoretically optimal number of bits. In: 13th Symposium on Discrete Algorithms (SODA), pp. 223–224. ACM-SIAM (2002)
McDiarmid, C.J.H., Steger, A., Welsh, D.J.A.: Random planar graphs. J. Combin. Theor. B 93, 187–205 (2005)
Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 118–126. IEEE Computer Society Press (1997)
Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. North-Holland Mathematics Studies 140, Amsterdam (1988)
Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of planar graphs and their triangulations. J. Combin. Theor. B 88, 119–134 (2003)
Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM J. Comput. 31(2), 353–363 (2001)
Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: 30th International Colloquium on Automata, Languages and Programming (ICALP), vol. 2719 of Lecture Notes in Computer Science, pp. 1080–1094. Springer, New York (2003)
Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans. Visual. Comput. Graph. 5(1), 47–61 (1999)
Schaeffer, G.: Random sampling of large planar maps and convex polyhedra. In: 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 760–769 (1999)
Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Discrete Algorithms (SODA), pp. 138–148. ACM-SIAM (1990)
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In: 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 242–251. IEEE Computer Society Press (2001)
Turán, G.: Succinct representations of graphs. Discrete Appl. Math. 8, 289–294 (1984)
Tutte, W.T.: A census of planar triangulations. Cana. J. Math. 14, 21–38 (1962)
Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38, 36–67 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Bonichon, N., Gavoille, C., Hanusse, N. (2011). An Information-Theoretic Upper Bound on Planar Graphs Using Well-Orderly Maps. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_2
Download citation
DOI: https://doi.org/10.1007/978-0-8176-4904-3_2
Published:
Publisher Name: Birkhäuser, Boston, MA
Print ISBN: 978-0-8176-4903-6
Online ISBN: 978-0-8176-4904-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)