According to requests of bulk warehouse grain quantity recognition, we take the scene video as identified object to obtain the object’s boundary from the result of edge detection difference iterative analysis. By using region iterative threshold value of gradient operator fitted closely with identified target carries to execute the picture characteristic second-extract and then to carrying on rectangular benchmark judgment using the membership functions of fuzzy recognition, we adopt the Visual C++ realized this recognition algorithm. And the experimental results show that this recognition algorithm effectively enhances the anti-jamming, robustness and the recognition precision and effect.
Chapter PDF
Similar content being viewed by others
References
Canny, J. (1986). A Computational Approach to Edge Detection [J], IEEE Transations Pattern Analytical Machine Intelligent 8: 679-698.
Cheng Xiao-chun (2006). A method of shape recognition [J], Pattern Recognition and Artificial Intelligence 6: 126-132.
Duda, R.O. & Hart, P.E. (1973). Pattern Classification and Scene Analysis [J], New York: Wiley.
Fu, K. S. & Mui, J. K. (1981). A Survey of Image Segmentation. Pattern Recognition [J], IEEE Transactions on Pattern Analysis and Machine Intelligence 13(1): 3-16.
Gao, J., Zhou, M. & Wang, H. (2001). A Threshold and Region Growing Combined Method for Filament Disappearance Area Detection in Solar Images [J], In Proceedings of The Conference on Information Sciences and Systems. The John Hopkins University.
Huertas, A. & Medioni G. (1986). Detection of Intensity Changes with Sub-Pixel Accuracy using Laplacian-Gaussian Masks [J], IEEE Transactions Pattern Recognition Machine Intelligent 8(5): 651-664.
J. F. Canny (Nov 1986), A Computational Approach to Edge Detection [J], IEEE PAMI, Vol. 8, No. 6.
J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. (1998). On combining classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3): 226-239.
Kim, V. & L. Yaroslavskii, (1986). Rank algorithms for picture processing [J], Comput Vision, Graphics, and Image Process 35: 234-258.
M.D. Kelly, Edge Detection in Pictures by Computer Planning [J], Machine Intelligence,Vol. 6 (American Elsevier, New York, 1973), pp. 397-409.
Marr, D. & Hildreth, E. (1980). Theory of Edge Detection [J], Proceedings of the Royal Society London B207: 187-217.
Pursuing technology. (2006). Visual C++ digital image disposal typical arithmetic and implement [M]. post & telecom press.
Pavlidis, T. (1982). Algorithms for Graphics and Image Processing [J], Computer Science Press, Maryland, USA.
T. Poggio, H. Voorhees and A. Yuille. (1985). A Regularized Solution to Edge Detection [J], May 1985 A. I. Memo 883, M.I.T.
Tou, J.T. & R.C. Gonzalez.Pattern Recognition Principles [M], Addison-Wesley Publishing, Reading, MA, USA, 1981.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 IFIP International Federation for Information Processing
About this paper
Cite this paper
Lin, Y., Fu, Y. (2008). The Key of Bulk Warehouse Grain Quantity Recognition. In: Li, D. (eds) Computer And Computing Technologies In Agriculture, Volume I. CCTA 2007. The International Federation for Information Processing, vol 258. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77251-6_59
Download citation
DOI: https://doi.org/10.1007/978-0-387-77251-6_59
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-77250-9
Online ISBN: 978-0-387-77251-6
eBook Packages: Computer ScienceComputer Science (R0)